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Supplemental Text and Results 
Compilation of mammal community data 
Our dataset of 515 mammal communities (Tables S1-4) was newly compiled for the 
purposes of this study and encompassed > 1.5 years (May 2017-December 2018) of 
data collection, screening, and standardization of species lists from multiple sources. 
We chose to compile community species lists by-hand from survey data rather than 
generate them from range maps because of the latter’s spatial coarseness and well-
documented proneness to both omission and commission errors (1-3). As such, 
relationships between species and their specific environmental associations, which 
‘scale up’ to the level of community composition, are often muddled by range maps, 
though we acknowledge important efforts to combine these sources of data in new 
frameworks (4-5). Indeed, consulting (but not relying on) species range maps was a 
key component of our data screening and standardization process. Below, we provide 
details on the four key steps through which our survey-based community datasets 
were gathered and screened: 
 
1) We compiled by-hand all possible sources of mammal community survey data from 
the Afrotropical, Indomalayan, Malagasy, and Neotropical biogeographic realms. This 
includes species lists from peer-reviewed papers in journals where mammal survey 
records are regularly published (e.g., Check List, Journal of Mammalogy, Mammalia, 
Oryx), natural history bulletins and government biodiversity surveys (e.g., Bombay 
Natural History Society, Brunei Museum Journal, Bulletin of the American Society of 
Natural History, and the survey ‘Mammals of Chitwan National Park’ carried out by 
ecologists in the Nepalese government), specialist handbooks and edited volumes, 
online biodiversity databases (e.g., ‘Map of Life’ hosted by multiple institutions 
including Yale University and the IUCN, as well as ‘Biological Inventories of the 
World’s Protected Areas’ hosted by the University of California Davis), and survey-
based community lists that have been published elsewhere—e.g., our Afrotropical 
data mainly derive from the multi-community datasets of Kamilar et al. (6) and 
Rowan et al. (7). Community datasets were then cropped to taxa generally weighing 
over 500 g on average, as survey records for small mammals are particularly 
sensitive to sampling effort (8). 
 
2) With this initial compilation of communities, we preemptively removed community 
species lists that were likely erroneous, either because they contained very few taxa 
(e.g., richness < 5, which is suspect for tropical and subtropical regions), were 
focused on a single taxon or handful of taxa (e.g., primate-only surveys of forest 
regions), or consisted of unrealistic taxonomic lists. The latter includes both chimeric 
faunas consisting of species that almost certainly never occur in sympatry and those 
riddled with taxonomic errors to the extent that they were unusable (in practice, 
differentiating between the two can be difficult given variation in the scope and detail 
of data collection methods provided). 
 
3) For the remaining communities, we obtained central latitude and longitude points 
and used these coordinates to obtain community species lists from shapefiles of 
species ranges from the IUCN Red List (9) using the packages maptools (10) and 
raster (11) in R (12). We then compared by-hand our community point data with 
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those generated from IUCN ranges to check for the congruence of taxa said to be 
present/absent, taking into account potential differences in species-level taxonomy 
(i.e., some of our checklists were published years ago and needed taxonomic 
updating). When these lists disagreed, often as a result of undersampling in our 
survey data or oversampling in the range maps, we investigated the likelihood of 
actual species presence/absence on a case-by-case basis using all possible sources, 
including georeferenced observations from the Global Biodiversity Information Facility 
(GBIF: www.gbif.org), expert distributional descriptions from handbooks and field 
guides, keyword searches on Google Scholar, and colleagues with expertise on 
particular mammal faunas of the world. Based on these sources, a decision was then 
made to add or remove the taxon from a given community list. For sake of clarity, we 
note that IUCN range maps were not used to construct community lists, but solely as 
a check of data quality that prompted us to seek out additional sources to ensure 
accuracy of the survey data. 
 
4) All final community lists (the 515 used in this study) were updated by-hand to the 
most recent IUCN Red List species-level taxonomies. By taking the time to update all 
community species lists to the most up-to-date IUCN taxonomies, we have controlled 
for legacy effects in the community data and its influence on both intra- and inter- 
realm diversity patterns (e.g., two realms with identical α diversity might not appear 
as such simply because of differences in using old and less speciose versus new and 
more speciose taxonomies). 
 
We provide the key references for the Afrotropical (6-7, 13-14), Indomalayan (15-53), 
Malagasy (54-57), and Neotropical (58-107) community datasets, as well as those 
we used for multiple realms (108-109). Additionally, we note two important points 
with regard to our community datasets: 1) each biogeographic realm analyzed in our 
study is made up of community lists derived from a mixture of data sources, meaning 
that any potential biases stemming from variation in source quality are limited; 2) the 
entire process of screening and standardizing community data was done by one of us 
(J.R.) so that there was no potential for biases to be introduced because of protocol 
variation among multiple recorders. 
 
 
Testing for the effects of community spatial extent 
The species-area relationship is a well-documented biogeographic pattern whereby 
community species richness increases as a function of the geographic sampling area 
(110, 111). Because our communities were compiled from species lists of parks and 
protected areas of varying size (Fig. S1), it is possible that species richness varies 
systematically in relation to community area, potentially confounding comparisons of 
phylogenetic and functional trait measures across the communities in our dataset. To 
test for confounding species-area relationships, we chose a subset of ~ 150 
Afrotropical communities of varying richness, downloaded shapefiles of their 
geographic boundaries from the World Database on Protected Areas (WDPA), and 
calculated their terrestrial area in km2. We find no relationship between area and 
species richness (R2 = 0.003, p = 0.225), with the slope of the line being near-flat 
(Fig. S2). This is likely due to the fact that large-bodied mammals are highly mobile, 
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have weaker dispersal limits than smaller-bodied species (112), and are less likely to 
exhibit ecological zonation (113). Previous studies have found the lack of a species-
area relationship in non-mammal vertebrate communities, such as birds (e.g., 114). 
 Likewise, because our communities vary significantly in spatial extent, there is 
a potential offset in the degree to which predictors derived from a central geospatial 
point (as done in this study) track predictors calculated from the community’s entire 
spatial extent. To test for this, we sampled predictor grids across community extent 
for the subset of ~ 150 communities for which we collected WDPA shapefiles. We 
find that weighted predictor means, shown in Fig. S3 for modern temperature and 
precipitation, closely track the community’s central predictor value irrespective of 
community size (area km2), meaning that the latter reliably captures important 
among-community variation in climate and human impacts. 
 
 
Dietary principal coordinates analysis 
We used a subset of 13 food types included in MammalDIET (115) to characterize 
the dietary diversity of mammal communities (Table S1). For each species, 
MammalDIET rank scores were inverted so that ranks correspond to: 0=food type not 
consumed, 1=food type rarely consumed, 2=food type often consumed, 3=primary 
food type. Species dietary ranks were then collapsed using a Gower distance-based 
principal coordinates analysis (PCoA) using the package vegan (116) in R (12). 
 The first and second resulting PCoA axes (hereafter, Diet1 and Diet2) account 
for ~ 83% of the variation in species diets (Fig. S4). Diet1 (52.73%) separates 
species that feed on woody and herbaceous vegetation from those feeding on 
invertebrate and vertebrate (mammal, bird, fish, and reptiles and amphibians) prey. 
Thus, Diet1 essentially separates species along a trophic gradient from strict primary 
consumers (mainly ungulates in the orders Artiodactyla and Perissodactyla) from 
carnivores (mainly species in the order Carnivora). Generalized species that span 
trophic levels (i.e., omnivores), such as primates and suids, fall near the origin. Diet2 
separates strict carnivores and strict leaf- or grass- feeding herbivores from more 
generalized species that include fruit, nectar, seeds, and other plant parts in their 
diets. These species are mainly mixed folivorous-frugivorous primates and rodents. 
 
 
Phylogeny choice from the Faurby and Svenning treeblock 
The Faurby and Svenning (117) treeblock contains 1000 mammalian phylogenies 
that vary in the details of their topology. In preliminary analyses and data exploration 
for this study, we ran analyses in which we randomly selected trees from the Faurby 
and Svenning treeblock and calculated NRI and NTI. Across all realms, we recovered 
near-identical results irrespective of the particular phylogeny used, which indicated to 
us that slight variations in tree topology had very little influence on the measurement 
of community phylogenetic structure (NRI/NTI). As such, and for sake of simplicity, 
we used the first topology (Tree1) of the Faurby and Svenning treeblock for all 
subsequent analyses. Because the NRI/NTI values from any one given topology are 
highly correlated with those from all others (r = 0.95-1.00), the choice of one 
particular tree over another has effectively no influence on the overall findings of our 
study. 
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Average model results 
Following Burnham and Anderson (118) we averaged the top 95% of model weights 
to determine the influence of past and present climatic and anthropogenic factors on 
mammal community structure using the package MuMIn in R (119). Tables of these 
results are given in Tables S6-9: Afrotropics, Table S6; Indomalayan, Table S7; 
Malagasy, Table S8; Neotropics, Table S9. Variable importance (sum of AICc weights 
are shown in Fig. S5. For significant predictors, we show bivariate relationships in 
Figs. S6-9. 
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Fig. S1. Histogram (bins = 30) of community area (km2) for a subset of ~ 150 
communities from our dataset. 
 

 
Fig. S2. Relationship between large mammal community richness and community 
area for ~ 150 communities from our dataset. Gray line indicates the linear fit, with 
shading showing the 95% CI of the relationship. 
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Fig. S3. Relationship between a community-wide weighted mean value (y-axis) and a 
central geospatial point (x-axis) and for modern mean annual temperature (A) and 
annual precipitation (B) across a subset of ~ 150 communities. 
 

 
Fig. S4. Dietary principal coordinates analysis (PCoA) of 13 food types from 
MammalDIET across 852 mammal species in 17 orders. Collectively, PCoA Axis 1 
(Diet1) and PCoA Axis 2 (Diet2) account for ~ 83% of variation in the dietary data. 
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Fig. S5. Heatmaps of AICc weights (variable importance) for past and present climate 
and human impacts on mammal community structure. Values in bold indicate 
predictors that were significant in the average model (top 95% of model weights).  
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Fig. S6. Scatterplots of significant variables in the average model predicting 
Afrotropical mammal community structure. 
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Fig. S7. Scatterplots of significant variables in the average model predicting 
Indomalayan mammal community structure. 
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Fig. S8. Scatterplot of the significant variable (modern temperature) in the average 
model predicting Malagasy mammal community structure. 
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Fig. S9. Scatterplots of significant variables in the average model predicting 
Neotropical mammal community structure. 
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Fig. S10. Differences in late Quaternary extinctions of terrestrial large-bodied (here, 
species ≥ 10 kg) herbivores across three continental realms. Values in parentheses 
above silhouettes indicate: late Quaternary species richness/present-day species 
richness. 
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Fig. S11. Principal components analysis representing the functional trait space of 
large mammal assemblages across the world’s tropical and subtropical realms, 
wherein each point represents a species colored by its respective realm. Convex hulls 
show the size and geometry of functional trait space across each realm. Collectively, 
the first and second axes account for ~ 80% of among-realm functional trait 
variation.  
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