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18 Quantitative Methods for Primate
Biogeography and Macroecology
Jason M. Kamilar and Lydia Beaudrot

Introduction

Technological advances have brought a wealth of new data and analytical approaches to
biogeography and macroecology (Graham et al. 2004; Kamilar & Beaudrot 2013).
Many of these advances are centered on spatially explicit data analyses enabled by
global positioning systems (GPS) and geographic information systems (GIS). In par-
ticular, geographic coordinates of species locales can be obtained through field surveys
using GPS devices, triangulation with radio-telemetry transmitters, as well as through
museum specimens with reliable collection locations (Graham et al. 2004). Although
most studies using geographic data from point occurrence have focused on extant
primates, there is increasing interest in the distribution of extinct species (Anemone
et al. 2011). Known occurrence data of fossil taxa can be similarly acquired with GPS
devices upon discovery or via specific and unambiguous descriptions of collection-site
locations. In contrast, primate distributions were traditionally defined via range maps
based on known or hypothesized occurrences (e.g., Wolfheim 1983). Range maps
assume that a species is found throughout its range, when in reality we know that they
are replete with gaps because not all terrain is suitable habitat for occupancy. Known
localities from geographic point-location data obtained with GPS and GIS technology
better represent species distributions and allow for more rigorous spatial and ecological
modeling.

In addition to establishing reliably known species occurrence distributions, GPS
coordinate data allow scientists to describe the abiotic and biotic environments in which
the species are found. A wide variety of geo-referenced environmental variables are
publicly available and can be used to understand how species distributions and traits
vary across space and time. Some of the most commonly used variables estimate
climate, vegetation, soil, and anthropogenic characteristics (Batjes 2009; Carroll et al.
2009; Hijmans et al. 2005). Combining species occurrence data with environmental
datasets allows researchers to understand the range of climate variation that species can
inhabit in the wild, connect climate and habitat characteristics to species’ presences and
absences as well as co-occurrences (beta diversity, i.e., turnover in the species found in
communities based on geographic distance), and investigate anthropogenic effects on
primate distributions and abundance. These data can be analyzed using commonly
implemented methods (e.g., principal component analysis, Mantel tests), as well as
more specialized analytical approaches such as ecological niche models and
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phylogenetic comparative methods. The specific data and analytical approach selected
are dependent on the research questions of interest.

In this chapter, we discuss multiple types of spatial data and analyses that can be used
to answer questions regarding the biogeography and macroecology of primates using
spatially explicit data on (1) primate species occurrence only and (2) primate species
occurrence integrated with other data (e.g., climate, trait, phylogenetic data). This
research has important implications for understanding the ecology and evolution of
extant and extinct primate species distributions as well as biological diversity more
generally. Many of these data and methods can be applied to conservation questions and
to investigate how primates fit within the broader community of sympatric vertebrates.

Methods Using Spatially Explicit Data on Species Occurrences Only
Quantifying Species and Community Distributions

We begin by describing several methods that quantify patterns in the community
composition of species at multiple spatial locations over large spatial extents. Quantify-
ing biogeographic patterns with these methods contributes to our understanding of why
communities contain the species that they do and how community composition varies
across space.

Species Co-occurrence Patterns

In 1975, Jared Diamond first proposed a set of assembly rules that he argued could be
examined to evaluate whether communities at different sites are composed of random
assemblages of organisms or if interactions between species result in predictable
patterns of co-occurring species across sites. Diamond’s assembly rules are evaluated
by comparing the presence and absence of species at a number of different spatial
locations; the rules test to what extent interactions between species at a site influence
community assembly (Diamond 1975). A number of quantitative co-occurrence pat-
terns have been investigated, in particular guild proportionality (Wilson 1989), Fox’s
assembly rule for favored states (Fox 1987), nestedness (Atmar & Patterson 1993), and
body size structure (Hutchinson 1959). Most notably, Diamond’s rules fueled wide-
spread investigation of checkerboard distributions, which have been studied across
many taxonomic groups and ecological systems using a null model approach (Gotelli
& McCabe 2002; Kamilar & Ledogar 2011). A checkerboard distribution refers to the
alternating presence of ecologically similar species on islands or other habitat patches,
which is argued to be the result of competitive exclusion. In a maximally checker-
boarded distribution, two species never co-occur because competition has resulted in the
exclusion of the inferior competitor, whereas in a minimally checkerboarded distribu-
tion, two species consistently co-occur because they are able to co-exist and thus
competitive exclusion has not occurred.

After many years of debate about how to construct appropriate null models with
which to examine assembly rules (Strong et al. 1984), Stone and Roberts (1990)
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developed the “C-score,” or checkerboard score, which quantifies the “checkerboarded-
ness” of a community and is still in widespread use today. The C-score is calculated as
CUij = (ri – Sij)(rj – Sij) where ri and rj are the total number of occurrences across sites of
species i and j and S is the number of sites where the two species co-occur. The C-score
is then calculated as the mean of the CU values for all species pairs in a matrix. The
C-score calculated from the observed data is then compared to a distribution of C-scores
calculated based on a null model. If the observed matrix has a significantly higher
C-score than matrices under the null model, then the community exhibits significant
ecological structure and the investigator can conclude that the community is not a
random assemblage of organisms but that interactions between species may have led to
the observed significant structure in the data. We note causality cannot be inferred from
such observational results in the absence of experimental data.

The R package EcoSimR (Gotelli et al. 2015) can be used to test for significantly
checkerboarded distributions as well as a number of other co-occurrence patterns.
EcoSimR has functions that permute the community presence–absence matrix to
create a null distribution. A variety of options are available for choices about
whether to maintain the row and column totals and guidelines for best practices
are provided.

Because the analyses of species presence–absence data currently available through
EcoSimR are unable to differentiate between multiple drivers of co-occurrence patterns,
including segregated, aggregated, or nested distributions (Ulrich & Gotelli 2012), an
increasing number of studies have focused on co-occurrence patterns at the species-pair
level (Cardillo & Meijaard 2010; Sanderson et al. 2009; Sfenthourakis et al. 2005).
Rather than summing and averaging the values for all species pairs in a community, a
species-pair approach restricts the level of analysis to two species and evaluates the
checkerboardedness of each pair in comparison to a null distribution for that pair. The
species-pair approach therefore provides a better approximation of the potential role of
negative (e.g., competition) or positive interactions (e.g., mutualism, facilitation)
between species because it identifies significantly high or low checkerboard scores for
each species pair, respectively.

At least two programs, PAIRS (Ulrich 2008) and COOC (Sfenthourakis et al.
2004), have been developed for species-pair analyses. We note that PAIRS is
limited to a maximum of 150 species and COOC uses only 5000 simulations, which
can result in high type I error rates when species richness is high (Fayle & Manica
2010). For analyses of more than 150 species, we recommend adapting functions
from the vegan package in R (Oksanen et al. 2013). For example R code, see
Beaudrot et al. (2013).

Community Nestedness

Analysis of the level of nestedness in a set of communities provides information on the
amount of hierarchical structure across the spatial extent of the sites. Like species
analyses of co-occurrence patterns, nestedness requires data on the presence and
absence of species at a number of different spatial locations. A set of communities
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may exhibit significant nestedness if small communities contain species that are a nested
subset of increasingly larger communities (Atmar & Patterson 1993; Guimarães &
Guimarães 2006; Patterson 1987) (Figure 18.1). A common explanation for this pattern
is the differential dispersal ability of species. In addition, extirpations that occur in an
ordered fashion may also result in a nested set of communities. In particular, species
could exhibit varying levels of extinction risk, such that some species can only survive
in a few communities, while other species can persist in many or all communities.
Finally, if communities are found in a variety of habitat types, then the habitats
themselves may exhibit some form of hierarchical structure, e.g., a simple habitat
containing few ecological niches and species may be found within a complex habitat
that contains diverse ecological niches and many species.

Nested patterns of community structure in primates have received limited attention.
Ganzhorn (1998) found that primate communities in eastern and western Madagascar
exhibited a significant nested pattern. In addition, he found that geographic distance was
the best predictor of community composition in western communities. Therefore, he
argued that the differential dispersal of species in this region resulted in nested assem-
blages. Later work by Lehman (2006) found that primate communities in Guyana
exhibited a significantly nested pattern. Finally, a novel application of this method
was recently applied to cultural assemblages of humans, chimpanzees and orangutans.
Kamilar and Atkinson (2013) found that human and chimpanzee cultural repertoires
exhibited significant nested patterns, yet this was not present for orangutans. This may
suggest that nested cultural repertoires were present in the last common ancestor of
humans and chimpanzees. Orangutans may not exhibit this pattern due to their less
gregarious social organization or their widespread extinction across much of southeast
Asia during the last several thousand years.

Software packages available to calculate nestedness are varied and have improved
over time. For example, Nestcalc (Atmar & Patterson 1993) was developed to quantify
the nestedness of communities in the early 1990s. More recently the ANINHADO
package was developed (Almeida-Neto et al. 2007, 2008). This method offers some
improvements over the original technique, as it is less sensitive to the size of the
community matrix (species by site dataset) as well as matrix fill (i.e., the number of
“presences” in the data matrix).

Figure 18.1 Two datasets representing random and nested structures. Species are
represented by columns and study sites are represented by rows. Cells are the
presence (1) or absence (0) of a species at a particular site.
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Identifying Biogeographic Regions

Cluster Analysis
When the spatial extent of the study area is large and a research question requires
identifying regions or patches with similar species composition in the study area, cluster
analysis is a useful tool. Cluster analysis generates spatial clusters based on locations
that have similar species composition (or other attributes designated as the variable of
interest) (Fortin & Dale 2005).

While the goal of cluster analysis is to attain objectivity in the grouping of biological
communities, it is nevertheless both a science and an art that requires a number of
subjective decisions based on the question of interest. Thus, as Krebs (1999) describes,
the central paradox of clustering methods is that they are objective in their calculations,
but only after subjective decisions have been made. When carefully implemented,
however, cluster analyses provide a useful tool for identifying which species are
important for structuring biological communities and for identifying similar groups in
the absence of a-priori assumptions. Cluster analysis can be used to identify groups at
any spatial scale, ranging from local to global.

Once the objectives of a study have been identified, input data are needed in the form
of a species by site matrix where species are the columns and sites are the rows. The
matrix can be populated with either presence–absence or abundance data. The next step
is to select a dissimilarity index to calculate the distance between sites. When a
dissimilarity index is applied to the species by site matrix, it produces a matrix of
values representing the distances for each pairwise site composition comparison. For
example, a distance matrix will contain one distance measure for each comparison
between site A and B, A and C, A and D, etc. Careful attention must be paid to the
appropriate selection of the distance matrix based on the question of interest because
different metrics have different properties. Some indices can be applied to presence–
absence data, whereas others can be used for abundance data. There is an extensive
literature available elsewhere on the properties of similarity indices (Baselga et al. 2007;
Carvalho et al. 2012; Koleff et al. 2003; Magurran 1988; Tuomisto 2010a, 2010b). The
majority of clustering methods then identify clusters using the distance values from the
dissimilarity index rather than the raw input data matrix.

Clustering methods include both non-hierarchical classifications and hierarchical
classifications. Non-hierarchical techniques produce a single partition that maximizes
similarity within groups and are most useful for summarizing differences. Common
non-hierarchical methods include K-means partitioning, in which the number of clusters
is identified a priori, as well as ordination techniques (Legendre and Legendre 1998).

Hierarchical classification cluster methods produce a series of hierarchical partitions
that represent the relationships between samples. These can take the form of either
divisive or agglomerative methods. Divisive hierarchical methods begin with a single
group and make divisions repeatedly from the “top down,” whereas agglomerative
hierarchical algorithms work from the “bottom up” by starting with an individual
sample and searching for the most similar samples to make a group (Legendre and
Legendre 1998). There are a number of different agglomerative linkage methods for
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identifying clusters. Kreft and Jetz (2010) provide a quantitative examination of nine
hierarchical agglomerative clustering methods and conclude that the unweighted pair-
group method using arithmetic averages (UPGMA) outperforms other commonly used
techniques. The UPGMA clustering method calculates the average distance between
two clusters as the distance between each cluster point and all other points in a different
cluster (Figure 18.2). A new cluster is formed from the two clusters with the lowest
average distance (Fielding 2007).

A longstanding weakness of cluster methods has been that the methods produce a
result but without any measures about uncertainty surrounding the result (Fielding
2007). New methods, however, have been developed to quantify uncertainty via
bootstrapping. For example, the “recluster” package in R calculates the relative strength
of clusters by shuffling the row order in the input data matrix, creating new cluster
dendrogram trees from the resampled data and then quantifying the percentage of times
that each of the cluster nodes are recovered (Dapporto et al. 2013). The output
“consensus tree” provides information on the cluster strength and therefore can be used
to draw stronger conclusions about the grouping of biological communities.

Clusters, once identified, provide the foundation for further quantitative analysis
of ecological and evolutionary patterns at a range of spatial scales. For example,

Figure 18.2 A hierarchical UPGMA cluster analysis based on Euclidian distances of social
group size and composition and dietary data. The dendrogram illustrates population-level
spatial variation in Eulemur in behavior and ecology. Data obtained from Ossi and
Kamilar (2006).

388 Jason M. Kamilar and Lydia Beaudrot



Comp. by: KARTHIGA G Stage: Proof Chapter No.: 18 Title Name: Dolinsetal
Date:31/10/19 Time:17:06:26 Page Number: 389

Carstensen et al. (2013) highlight how cluster analysis can be used to identify broad
biogeographic regions that can then function as regional species pools for further
analysis of macroecological patterns. Beaudrot et al. (2014) use this method to identify
regions in which to study the relative influences of environmental filtering and dispersal
limitation on primate community composition throughout sub-Saharan Africa. Cluster
analysis resulted in nine biogeographic regions. Partial Mantel tests within each region
revealed that dispersal limitation was a stronger determinant of primate communities,
but that the strength of the dispersal limitation was strongest near the equator and
declined with increasing absolute latitude. Thus, identification of biologically meaning-
ful samples is central to understanding the factors that influence species distributions
and community composition.

Methods Incorporating Spatially Explicit Covariate Data

In this section we describe a number of methods that use geographically referenced data
on species occurrences and covariates, such as environmental data (e.g., temperature,
rainfall, soil conditions, vegetation, etc.). Like the species occurrences, the covariate
data are from explicit spatial locations (e.g., x, y coordinates obtained by GPS or GIS),
which are used in the analyses.

Quantifying Species Niche Space

Ordination
Ordination methods, such as principal components analysis (PCA) and principal coord-
inates analysis (PCoA) (Manly 2005; McGarigal et al. 2000; Tabachnick & Fidell
1989), have a long tradition in ecological research. These methods reduce the dimen-
sionality of a complex dataset, thereby allowing the information contained in numerous
variables to be examined in fewer (often two or three) dimensions. The mathematical
mechanics of these methods are based on the idea that most variables co-vary to some
extent. A dataset containing correlated variables contains redundant information that
can be removed through ordination analysis. New variables can be created that are a
combination of the original variables, yet are independent from each other and explain
most of the variation in the original dataset. These new variables can be plotted visually,
enabling two or three axes to represent a more complex multidimensional space
(Figure 18.3). Reducing complex datasets to a few important variables is useful because
it makes data interpretation easier and can reveal important biological patterns that may
be more difficult to detect otherwise. In addition, many statistical techniques may be
more difficult to implement and/or interpret if variables are highly correlated. Macro-
ecological datasets often contain correlated variables (e.g., annual rainfall and rain
seasonality, temperature and elevation), and therefore are commonly analyzed using
ordination techniques (Kamilar & Muldoon 2010; Peres 1997).

GIS-based climate data are now widely available and enable researchers to easily
collect a large amount of abiotic environmental information for many locations. For
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instance, the WorldClim database (Hijmans et al. 2005) contains 19 bioclimatic vari-
ables that quantify various aspects of temperature and rainfall variation for nearly every
terrestrial location in the world. Not surprisingly, many of these climate variables are
highly correlated, and therefore contain redundant information. Principal component
analysis can be used to summarize all or a subset of WorldClim’s bioclimatic variables
into only a few axes. Several studies have used this approach to quantify the multidi-
mensional climatic niche space occupied by species. This research involves using the
known locations for multiple species and extracting climate data for each occurrence. In
one study, Kamilar and Muldoon (2010) used a PCA to quantify the climatic niche
space of Malagasy primates. Their dataset comprised more than 1000 known localities
of 43 taxa, with nine abiotic variables for each site. The abiotic variables quantified
various aspects of rainfall and temperature variation, as well as elevation. The two most
important components produced by the PCA resulted in a rainfall niche axis and a
temperature niche axis. The authors then used these results to calculate mean climatic
niche space of each species and examined this variation in a phylogenetic context.
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Figure 18.3 Plot of the first two principal components analyses illustrating spatial variation in
social group size and composition and diet data across Eulemur populations. Data obtained from
Ossi and Kamilar (2006).
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Asking the question of whether closely related species tend to exhibit similar climatic
niche spaces, their results showed that this was not the case. In fact, closely related
species usually exhibited distinct climatic niches and distantly related species often
converged on the similar climatic niche spaces.

Other studies have used PCA to quantify the niche space of primate communities
based on the biological traits of their species. For instance, Fleagle and Reed (1996)
used a PCA to quantify 10 traits (including those related to body mass, diet, and
positional behavior) for all species living in eight communities distributed across each
of the four major regions inhabited by primates. They found that communities displayed
substantial overlap in their ecospace within continents. In contrast, there was a notice-
able difference in the ecospace exhibited by communities on different continents. Their
results largely reflect differences in the historical biogeography of primates and the
subsequent endemism and associated biological diversity of species within each
continent.

It is important to note that although PCA is designed to deal with collinearity among
variables, some authors suggest that including several highly correlated variables in a
PCA may produce spurious results (McGarigal et al. 2000). Therefore, they recommend
removing highly correlated variables before analysis.

Principal component analysis and other ordination techniques (e.g., PCoA, factor
analysis, canonical correspondence analysis, multidimensional scaling, etc.) are com-
monly found in many comprehensive statistical packages (e.g., SPSS, Statistica, SAS)
and can also be implemented in R using vegan (Oksanen et al. 2013) and other
packages.

Ecological Niche Models
Predicting the potential distribution of species using ecological niche modeling (i.e.,
species distribution modeling) has been an increasingly popular goal in ecology, though
this is only beginning to take hold in primate-focused research. Typically, scientists
predict the potential distribution of a species based on known species occurrences and
the climatic and other abiotic factors (e.g., soil pH, topography) that a species is known
to experience. However, other factors, such as competition with other species occupying
similar niches, may also influence species distributions. Importantly, recent research in
niche modeling is beginning to incorporate the effects of biotic interactions (Kissling
et al. 2012). At a basic level, niche modeling analyses can provide insights into the
particular environmental factors that are associated with known species occurrences.
This approach has been used by Boubli and de Lima (2009) and Vidal-García and Serio-
Silva (2011) for Neotropical primates and Thorn et al. (2009) for lorises. In addition,
niche models can be used to predict shifts in species ranges under different climate
change scenarios (Junker et al. 2012; Thorne et al. 2013), which could have important
conservation implications. Finally, some researchers have used niche models as evi-
dence for delineating species boundaries and modifying taxonomic schemes. For
example, Blair et al. (2013) examined the ecological divergence and species diversity
of Eulemur. A similar study by Kamilar et al. (2016) focused on Microcebus taxa
(Figure 18.4).
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Several methods exist to perform ecological niche modeling, including generalized
additive models, boosted regression trees, GARP (genetic algorithm for rule set
prediction), and MaxEnt (maximum entropy) (Elith & Graham 2009). One of the most
commonly used and best-performing methods for niche modeling is MaxEnt (Elith et al.
2006; Phillips & Dudık 2008; Phillips et al. 2006). One important benefit of this method
is that it can predict species distributions based on known occurrences, and without data
about known absences. Therefore, the challenges associated with being certain about
locations where species do not exist is less important compared to other methods.
Further details about niche modeling are presented in Chapter 15 and by Merow et al.
(2013).

Predicting Spatial Variation in Community Structure and Biological Traits

Spatially explicit data can be used to examine geographic variation in biological traits
(at the intraspecific and interspecific levels) and community structure. In particular,
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Figure 18.4 Ecological niche models of (a) Microcebus griseorufus and (b) Microcebus murinus
based on temperature and rainfall variables. Warmer colors indicate a higher probability of the
species being present. Cooler colors indicate areas of low probability of being present.
Adapted from Kamilar et al. (2016), © Cambridge University Press 2016, with permission.
(A black and white version of this figure will appear in some formats. For the color version, please
refer to the plate section.)
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researchers are often interested in how geographic distance, environmental factors, and
genetics influence geographic variation in biological traits and community-level char-
acteristics. A wide variety of methods are available to address these topics.

Mantel Tests
One of the most commonly implemented statistical methods is the Mantel test (Mantel
1967). The traditional version of a Mantel test uses one independent and one dependent
variable, with the variables arranged as either a dissimilarity/distance or similarity
matrix. This arrangement is particularly useful for spatial data since one matrix usually
represents geographic distance among sites or populations. Statistical significance is
obtained via a randomization approach. Therefore, this test is useful for data that do not
satisfy the assumptions of parametric statistics. Mantel tests can also be modified to
include more than one predictor matrix (Smouse et al. 1986). The partial Mantel test
allows for two or more predictor matrices, which accounts for covariation among
predictors, and can therefore reveal the independent effect of each predictor on the
dependent variable. Several studies have used this latter approach to examine various
questions in biological anthropology and primatology. However, we should note that
some recent papers have discussed several weaknesses of the method (Guillot &
Rousset 2013).

Several studies have used a similar approach to examine nonhuman primate diversity.
Ossi and Kamilar (2006) used partial Mantel tests to investigate the relative importance
of phylogeny and local environmental factors on the behavior and ecology of Eulemur
populations. They found that phylogeny best predicted variation in social organization,
while controlling for local environmental factors. In contrast, local environment best
predicted activity budgets, independent of phylogeny. At a broader spatial and taxo-
nomic scale, Beaudrot and Marshall (2011) used partial Mantel tests to tease apart the
relative importance of geographic distance and environmental factors for predicting the
species composition of primate communities. They found that geographic distance was
consistently a stronger predictor of community structure in Africa, South America, and
Borneo, but that environmental distance was more important for primate communities
within Madagascar.

In addition to using data, hypotheses themselves can be represented as a distance
matrix and used in Mantel tests. Sokal et al. (1997) used this approach to test alternative
hypotheses related to the dispersal of early humans throughout the Old World. Matrices
were designed to represent different ideas about human dispersal, including hypotheses
of regional continuity, out of Africa, and single origin out of southwest Asia. These
design matrices were correlated to a matrix based on cranial traits of fossil hominin taxa.
Interestingly, the single origin out of southwest Asia hypothesis of humans best
predicted the cranial morphology matrix.

Several options are available to conduct Mantel tests. Some of the most popular
software packages that can perform both Mantel and partial Mantel tests are the
standalone spatial statistics program PASSAGE, (Rosenberg 2001) or the vegan (Oksa-
nen et al. 2013) and ecodist (Goslee & Urban 2013) packages in R.
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Canonical Correspondence Analysis
Another method used to predict the species composition of communities is canonical
correspondence analysis (CCA). This method is both an ordination technique and a
predictive analysis, utilizing a set of independent variables to predict a set of dependent
variables while accounting for covariation within and between datasets. Therefore, it is
possible to account for spatial effects by including geographic variables as predictors in
the model. Traditionally this method was limited because it requires a relatively large
dataset that conforms to parametric statistical assumptions. More recent versions can
use a randomization approach to generate p-values, allowing for a relaxation of these
assumptions (ter Braak & Smilauer 2002). The results of CCA can be visually displayed
as a biplot (Gower & Hand 1995) that displays the predictor variables as vectors, with
the length of each vector being proportional to its importance in predicting the depend-
ent variables. The dependent variables are displayed as points in multidimensional
space, similar to a PCA plot. Dependent variables are best predicted by independent
variables whose vectors are in the same plane (Figure 18.5).

Some authors argue that CCA is more powerful than Mantel tests because the raw
data are used in CCA, as opposed to distance matrices (Legendre 2000; Legendre et al.
2005). Canonical correspondence analysis also has the advantage of being able to
discern the specific independent variables responsible for explaining variation in the
dependent variables. For example, using partial Mantel tests can reveal a negative
association between geographic distance and community similarity. Using a CCA,
geographic distance is represented as two variables: latitude and longitude. Therefore,
using this approach could show that latitude in particular was the most important
geographic variable, and that it best explained variation in the presence/absence of a
particular set of species within the communities.

Canonical correspondence analysis was used by Kamilar (2009) to predict continen-
tal variation in the species composition of primate communities from geographic
(latitude and longitude) and climate variables. He found that both latitude and longitude
were significant predictors of community composition in Africa, Asia, and the Neo-
tropics, whereas only longitude was a significant predictor for Malagasy communities.
In all cases, these geographic effects were independent of climate. In addition, several
climatic variables were significant predictors of primate community structure in all
regions except Asia.

This method was also applied to a putative cultural dataset of chimpanzees. Numer-
ous cultural traits have been identified for chimpanzees, but the number and frequency
of traits varies across sites (Whiten et al. 2001). Kamilar and Marshack (2012) used
CCA to investigate the relative importance of geographic distance and local ecological
factors for explaining across-site cultural variation. They found that sites in close
proximity to each other exhibited similar cultural repertoires, independent of ecological
effects. This similarity declined as the distance between sites increased.

For many years, the only available program that conducted a CCA using randomiza-
tion was CANOCO (ter Braak & Smilauer 2002). With the increasing popularity of R in
recent years, other options are available, including the vegan package(Oksanen et al.
2013). To our knowledge, this analysis is not currently available in SPSS.
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Spatial Regression Models
Whereas CCA models directly examine spatial effects by including geographic
variables as predictors, many spatial regression models use an indirect approach to
incorporate spatial effects. For example, a CCA analysis may include the latitude and
longitude of each study site as predictors and variables such as the presence/absence of
species as dependent variables. In contrast, spatial regression models, such as simultan-
eous autoregressive models, may account for spatial effects by adjusting the model’s
error structure using a spatially explicit variance–covariance matrix. This has the effect
of down-weighting samples that are in close proximity to each other. There are several
statistical techniques available to account for spatially autocorrelated datasets, including
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Figure 18.5 Biplot representing the relative importance of latitude, longitude, and climate variables
for predicting the species composition of Neotropical primate communities. This figure was
originally published in the electronic supplement of: Kamilar JM (2009) Environmental and
geographic correlates of the taxonomic structure of primate communities. American Journal of
Physical Anthropology 139:382–393. The figure is reproduced here courtesy of Wiley-Liss, Inc.
Copyright © 2008 Wiley-Liss, Inc.
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generalized linear models, generalized estimating equations, and conditional autore-
gressive models. These and other methods (including those that directly incorporate
spatial variables into the models, such as eigenvector mapping, are thoroughly reviewed
in Dormann et al. (2007).

Spatial regression models have not been commonly used in primatological research.
Some recent exceptions are studies conducted by Kamilar et al. (2014, 2015). These
papers examined the potential importance of climatic variables for predicting the phylo-
genetic structure of primate and mammal communities across African parks and protected
areas. In particular, several simultaneous autoregressive models were used to predict
various measures of community structure while accounting for spatial autocorrelation in
the residual structure of the models. Accounting for spatial autocorrelation is potentially
important because sites in close proximity to each other are more likely to exhibit similar
climatic and community structures than sites that are found far away. Interestingly, both
studies found that climatic variables are important predictors of community structure, but
the specific climate variables that are important vary across clade (haplorrhines versus
strepsirrhines and primates versus carnivorans versus ungulates).

Regression models that explicitly account for spatial effects are likely to increase in
popularity with the increased availability of recently developed statistical software.
Presently, a variety of spatial regression models can be conducted using the Spatial
Analysis for Macroecology program (Rangel et al. 2010). This program is a “point and
click” software package that has been commonly used in ecological research. Add-
itional options can be found in the R computing environment, especially in the spdep
package (Bivand 2013).

Distinguishing the Influences of Space and Phylogeny
We have discussed several methods that can be used for spatially explicit analyses and
account for possible confounding effects of spatial autocorrelation (e.g., partial Mantel
tests and CCA). Increasing availability of well-resolved phylogenies has enabled explicit
evolutionary approaches to studying community structure and, in some cases, a compara-
tive analysis can be both spatial and phylogenetic in nature. For instance, a model’s error
structure may show phylogenetic or spatial autocorrelation in the case of examining the
potential effects of abiotic factors on interspecific trait variation. A generalized linear
model developed by Freckleton and Jetz (2009) addresses this issue by using a geo-
graphic distance matrix and a phylogenetic variance–covariance matrix (i.e., a matrix
representing the phylogenetic distance between species in the dataset) to weigh the
residuals of the model. In addition, their model quantifies the effects of space and
phylogeny in the error structure. Importantly, if space and phylogeny have no influence
on the model, then the analysis is identical to a normal linear model.

Freckleton and Jetz’s method to separate spatial and phylogenetic effects was
recently used in two publications examining different aspects of primate biogeography.
In a dataset comprising more than 100 primate species, Kamilar and Bradley (2011)
found a negative relationship between the actual evapotranspiration (as opposed to
potential evapotranspiration) within a species’ geographic range and the brightness of
their hair. In addition, both phylogeny and space had very little effect on the model. The
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method was also used by Kamilar et al. (2012) to investigate whether Bergmann’s rule
(i.e., increased body size associated with high latitudes, usually corresponding to lower
temperatures) or resource seasonality best explained body mass variation in Malagasy
primate species. They used site-specific geo-referenced climate data and dietary infor-
mation as independent variables in a model predicting species body mass. Neither
climatic nor dietary variables were strong predictors of body mass. In addition, phyl-
ogeny, but not space, had a significant effect in the models. Additional analyses showed
that closely related species exhibited similar body mass, independent of the environ-
mental conditions they experienced.

Final Thoughts

The aim of this chapter has been to provide a broad illustration of the statistical tools
available for spatial analyses in biogeographic and macroecological research, as well as
the diversity of questions that can be answered with these tools. While our review has
not been exhaustive in its coverage of methods or published research, we hope it will
provide an introductory reference to general methodological concepts and examples in
primates that will be useful to readers. Extant primates are particularly well-suited to
serve as the focal taxon of these questions because their distributions and biology are
better known than most other tropical mammals (Primack & Corlett 2005; Reed &
Bidner 2004). This is important because more insight into the mechanisms that drive
species distributions can be gained when occurrences are known with a high degree of
confidence. In contrast, if occurrences are not well known, then false absences are likely
to bias results. While we focused mostly on extant primate studies, we note that many of
the methods and questions discussed in this chapter can also be applied to paleoeco-
logical research. In sum, the time is ripe to address biogeographic and macroecological
questions in primates, given the wealth of spatially explicit data available and rapidly
developing quantitative techniques.
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