

Relative Pituitary Gland Size Predicts Mammal Life History Variation

Journal:	Journal of Evolutionary Biology
Manuscript ID:	Draft
Manuscript Type:	Research Papers
Date Submitted by the Author:	n/a
Complete List of Authors:	Kamilar, Jason; Arizona State University, School of Human Evolution and Social Change Tecot, Stacey; University of Arizona, School of Anthropology
Keywords:	Comparative studies, Life history evolution, Mammals, brain evolution, proximate mechanisms, macroevolution, primates, ungulates, bats

SCHOLARONE[™] Manuscripts

1	Relative Pituitary Gland Size Predicts Mammal Life History Variation
2	
3	Jason M. Kamilar* ^{a,b} and Stacey R. Tecot ^c
4	
5	^a School of Human Evolution and Social Change, Arizona State University, Tempe, USA
6	^b Department of Anatomy, Midwestern University, Glendale, USA
7	^c School of Anthropology, University of Arizona, Tucson, USA
8	
9	*Corresponding author
10	email: jason.kamilar@asu.edu
11	phone: 623-572-3765
12	fax: 623-572-3730
13	
14	Running title: Pituitary Gland Size and Mammal Life History
15	
16	
17	
18	

19 Abstract

At the proximate level, hormones are known to play a critical role in influencing the life 20 history of mammals, including humans. The pituitary gland is directly responsible for 21 producing several hormones, including those related to growth and reproduction. 22 23 Although we have a basic understanding of how hormones affect life history characteristics, we still have little knowledge of this relationship in an evolutionary 24 context. We used data from 129 mammal species representing 14 orders to investigate 25 the relationship between pituitary gland size and life history variation. Because pituitary 26 27 gland size should be related to hormone production and action, we predicted that species with relatively large pituitaries should be associated with fast life histories, 28 especially increased fetal and postnatal growth rates. Phylogenetic analyses revealed 29 that total pituitary size and the size of the anterior lobe of the pituitary significantly 30 31 predicted a life history axis that was correlated with several traits including body mass, 32 and fetal and postnatal growth rates. Additional models directly examining the association between relative pituitary size and growth rates produced concordant 33 34 results. We also found that relative pituitary size variation across mammals was best explained by an Ornstein-Uhlenbeck model of evolution, suggesting an important role of 35 stabilizing selection. Our results support the idea that the size of the pituitary is linked to 36 37 life history variation through evolutionary time. This pattern is likely due to mediating hormone levels but additional work is needed. We suggest that future investigations 38 incorporating endocrine gland size may be critical for understanding life history 39 evolution. 40

Keywords: brain evolution, growth factor, phylogenetic comparative methods,
proximate mechanisms, macroevolution, primates, ungulates, bats

43 Introduction

Life history traits vary noticeably across and within species and are influenced by 44 a variety of ultimate and proximate factors (Calder, 1984; Austad & Fischer, 1991; 45 Charnov, 1991; Stearns, 1992; Hawkes et al., 1998; Ricklefs & Wikelski, 2002; Gaillard 46 et al., 2003; Kamilar et al., 2010; Kamilar & Cooper, 2013). From an ultimate 47 perspective, comparative analyses have yielded important insights into the evolutionary 48 variables that underlie life history variation. For instance, environmental conditions 49 related to temperature and food abundance can impact species growth rates and the 50 timing of reproduction (Western, 1979; Promislow & Harvey, 1990; Martin, 1995; 51 Gillooly et al., 2002). Other researchers argue that mortality rates should impact life 52 53 history variation (Brown & Sibly, 2006). In particular, species experiencing high mortality rates (e.g. due to high predation) are associated with an earlier age of first reproduction, 54 shorter lifespans, and/or increased growth rate (Wilkinson & South, 2002). 55 56 At the proximate level, a variety of hormones are known to play a critical role in influencing the behavior and life history of mammals, including humans (Bribiescas, 57 2001; Holzenberger et al., 2003; Dantzer & Swanson, 2012). Most of this research is 58 focused on single species studies, demonstrating important connections between 59 hormone signaling and biological variation across and within age/sex classes. Burnham 60 et al. (2003) showed that human males in committed, romantic relationships exhibited 61 21% lower testosterone levels compared to other men. Males with lower testosterone 62 levels are not more successful in attracting mates. Rather, longitudinal research has 63 64 demonstrated that men with higher testosterone levels were more likely to be partnered

4.5 years later, but that those who became partnered fathers experienced significant
declines in testosterone levels (Gettler *et al.*, 2011).

Hormones are produced from multiple glands in the body. The pituitary gland is 67 directly responsible for producing several hormones, including those related to growth 68 and reproduction. For example, the anterior pituitary produces growth hormone (GH), 69 thyroid stimulating hormone, and prolactin, and the posterior pituitary produces oxytocin 70 and vasopressin (Melmed, 2011). In addition, some of these hormones, such as GH, 71 target organs in the body and result in the subsequent production of additional 72 73 hormones. In one pathway, the pituitary secretes GH, which targets the liver, stimulating the production of insulin-like growth factor 1 (IGF-1). Hormone signaling pathways are 74 highly conserved, and are central to correlated responses in growth, reproduction, and 75 survival. For example, the insulin/IGF pathway facilitates increased growth and 76 reproduction in early life, and reduced signaling in part due to changes in gene 77 expression, and increases lifespan in species as diverse as worms, flies, mice, and 78 dogs (Kenyon, 2010). 79

In addition, evidence from experimental studies has supported the idea that the 80 pituitary gland has a significant effect on animal life history. For example, experimental 81 research in mice has shown that genetic mutations inhibiting the normal development of 82 the anterior pituitary result in a substantial increase in longevity, most likely due to a 83 84 reduction in GH and IGF-1 production (Flurkey et al., 2001; Bartke, 2005). Additionally, data from humans suggest that pituitary disorders, including tumors, can result in over-85 secretion of GH and lead to increased growth rates (Ayuk et al., 2004; Vierimaa et al., 86 87 2006). The relationship between pituitary size and mammal growth and life history is not limited to genetically altered or pathological individuals. In fact, research from wild
mammal populations has demonstrated that changes in the size and cell composition of
the pituitary within species are related to variation in growth rates and female
reproductive season and cycle stage (Richardson, 1979; Nelson & Inao, 1982). All of
these studies demonstrate that the size of the pituitary is related to levels of hormone
production, and that variation in pituitary-related hormone production affects growth,
reproduction, and lifespan.

Hormone levels and life history traits are likely interrelated in mammal species, 95 96 based on recent interspecific studies. Buffenstein and Pinto (2009) noted that several hormones, including thyroxine, GH, and IGF-1 are secreted at lower levels in naturally 97 long-lived rodents and bats. A recent study by Swanson and Dantzer (2014) using a 98 phylogenetic comparative approach demonstrated that several life history 99 characteristics, including maximum lifespan and neonate mass, were significantly 100 related to interspecific differences in IGF-1 plasma concentrations across 41 mammal 101 species. Both of these comparative studies suggest that evolutionary shifts in baseline 102 hormone levels can alter life history traits. 103

Although we have a basic understanding of how hormones affect life history characteristics, we still have little knowledge of this relationship in an evolutionary context. Using a phylogenetic approach to understand how proximate mechanisms influence life history traits can provide important insights into evolutionary physiology and biology (Braendle *et al.*, 2011; Williams, 2012). Therefore, we used a broad comparative dataset to investigate the relationship between relative pituitary gland size and several mammal life history traits. We are particularly interested in fetal and

111 postnatal growth rates because these traits are likely to be most affected by the production and action of relatively well-known hormones (e.g. GH and IGF-1). We 112 predicted that species with relatively large pituitaries should be associated with 113 increased fetal and postnatal growth rates. In addition, since the hormones related to 114 these traits are produced by the pituitary's anterior lobe, we predicted that the size of 115 the anterior lobe should be an even stronger predictor of growth. We expected to find a 116 similar relationship between relative pituitary size and other life history traits that are 117 known correlates of species growth rates, including maximum longevity and gestation. 118 Finally, we followed recent studies of trait evolution (Cooper & Purvis, 2010; Harmon et 119 al., 2010) by testing three evolutionary models that may explain the diversity of mammal 120 relative pituitary size: a random walk model (modeled as Brownian motion process), a 121 122 random walk model with a single stationary peak (modeled as an Ornstein-Uhlenbeck process), and an early burst model where traits diversify rapidly early in the clade's 123 history, and trait evolution slows as time progresses (modeled as a Brownian motion 124 process with an evolutionary rate change parameter). 125

126

127 Materials and methods

128 Data collection

We collected data from a total of 129 mammal species, which represented 14 orders (see Online Appendix A). In particular, five orders represent most of the species in our dataset: Primates (37 species), Rodentia (30 species), Chiroptera (17 species), Carnivora (12 species), and Artiodactyla, (10 species). We obtained pituitary size (post mortem volume) information for all species from the most comprehensive dataset

134 published to date (Bauchot & Legait, 1978). Bauchot and Legait (1978) included the total size of the pituitary as well as the size of the anterior, intermediate, and posterior 135 lobes. In addition, Bauchot and Legait (1978) reported body and brain mass data (in 136 grams) for each species. We excluded data from domesticated species because 137 domestication has been suggested to influence the relative size of the pituitary 138 139 (Oboussier, 1940). Nearly all the data were obtained from adults, but the sexes were not specified. Having a mixed sex sample represent species likely increased the 140 variation in the dataset and resulted in increased type II error in our analyses. We did 141 142 not examine the influence of the intermediate lobe on life history traits as this part of the pituitary is highly variable and poorly studied across mammals (Bauchot & Legait, 143 1978). 144

We gathered data for ten life history traits: body mass, brain mass, gestation 145 length, neonate body mass, litter size, weaning age, weaning body mass, maximum 146 longevity, fetal growth rate, and postnatal growth rate. We chose these traits because 147 most of them have been used in recent studies of vertebrate life history evolution 148 (Catlett et al., 2010; Swanson & Dantzer, 2014). We followed previous studies by 149 calculating fetal growth rate as litter mass divided by gestation length (Lindenfors, 2002; 150 Tecot et al., 2012), and postnatal growth rate as litter mass at weaning minus litter mass 151 at birth, divided by age at weaning (Mitani & Watts, 1997). We obtained these data from 152 153 the PanTHERIA database (Jones *et al.*, 2009). This database has been extensively used in comparative studies examining the evolution of mammalian traits (Pontzer & 154 Kamilar, 2009; Kamilar et al., 2010; Cooper et al., 2011; Safi et al., 2011; Venditti et al., 155 156 2011). Maximum longevity values were also based on data presented in another widely

- used life history database, AnAge (Tacutu *et al.*, 2013). Unfortunately, data associated
- with all the life history traits were not available for all species with pituitary size data.
- 159 Therefore, we used different analytical approaches that included different subsets of
- species (see Appendix S1 for the data associated with each species).
- 161

162 Data analyses

163 Examining Life History Variation in Multivariate Space

First, we performed a principal components analysis (PCA) that included all 10

traits to examine life history diversity in multivariate space. This analysis included 69

species from our total dataset. We used the prcomp function in R

167 (R_Development_Core_Team, 2014) and set the scale and center arguments to TRUE.

168 These functions transform the variables to have unit variance and be zero centered

before the analysis is run. We considered using a phylogenetic PCA (Revell, 2009) but

the goal of the analysis was to quantify variation in the dataset as opposed to

171 quantifying multivariate distances among taxa since they diverged (Revell, 2009; and

172 Revell, Pers Comm). Therefore, a typical PCA is most appropriate.

173

179

174 Examining the Relationship between Pituitary Size and Life History Traits

We used phylogenetic generalized linear models (PGLS) with Pagel's lambda (Pagel, 1999; Freckleton *et al.*, 2002; Nunn, 2011) to examine the relationship between pituitary size and multivariate space in life history traits. In each model, the optimal value of lambda was found using a likelihood approach. Total pituitary size and anterior

lobe size were used as single predictors in separate PGLS models. Similarly, principal

components with eigenvalues greater than one were used as single dependent
 variables in separate models. This arrangement yielded four total models.

We used a second set of PGLS models to more directly examine the relationship 182 between relative pituitary size and mammal growth rates. In addition, this approach 183 allowed us to use a larger sample size than the PCA analysis because not all life history 184 traits were required for each taxon. Each growth rate was used as a dependent variable 185 in separate analyses and we conducted three analyses for each trait. Each analysis 186 contained one of our variables of interest: total pituitary size, anterior lobe size, or 187 188 posterior lobe size. We used the size of the pituitary's posterior lobe as an "analytical control", expecting no significant effect on life history variation because the posterior 189 lobe, which is functionally associated with the hypothalamus, secretes oxytocin (OT) 190 and arginine vasopressin (AVP) and not growth hormones. In addition, these hormones 191 are actually synthesized by the hypothalamus and simply stored in the posterior lobe of 192 the pituitary. Although prior research has shown that AVP influences social behavior, 193 which in theory could influence life history traits such as growth rates and maximum 194 longevity (though Kamilar et al., 2010 did not find a positive relationship between 195 196 sociality and longevity in mammals), neuropeptide receptors have a stronger connection to behavior, not the hormone levels themselves (Insel, 2010). In addition, much of our 197 knowledge of AVP and social behavior comes from studies examining a small number 198 199 of rodent species (Winslow et al., 1993; Wang et al., 1996), and generalizing these findings to most mammal species is problematic (Insel, 2010). Considering these 200 factors, we predicted that posterior lobe size would have little or no effect on growth 201 202 rates. We also included brain mass and body mass as covariates in each model

203	because these traits are known to be related to life history traits (Calder, 1984; Allman
204	<i>et al.</i> , 1993a; Allman <i>et al.</i> , 1993b; Wilkinson & South, 2002; Leigh, 2004; Barton, 2006;
205	Pontzer & Kamilar, 2009). In addition, pituitary gland size increases with body and brain
206	size (Bauchot & Legait, 1978).
207	All data were log_{10} transformed prior to analysis. We examined Q-Q plots, the
208	distribution of phylogenetic residuals, and fitted value vs. residual value plots for each
209	model to be confident that our data met the assumptions of our statistical tests. If we
210	discovered outliers, then we re-ran the model with the outlier data points removed. All
211	PGLS models were conducted with the caper package (Orme et al., 2014) for R
212	(R_Development_Core_Team, 2014) and utilized the mammal supertree presented in
213	Bininda-Emonds et al. (Bininda-Emonds et al., 2007; Bininda-Emonds et al., 2008).
214	Finally, we used a multi-model selection procedure to better understand the
215	relative importance of the predictor variables and covariates in the second set of PGLS
216	models. We examined several null models, which contained one or both covariates
217	(body mass and/or brain mass). Additional models included one or both covariates
218	along with each measure of pituitary size: total pituitary size, anterior lobe size, and
219	posterior lobe size. We used Akaike Information Criterion corrected for small sample
220	size (AICc) to judge model fit (Burnham & Anderson, 2002). We considered the model
221	with the lowest AICc value as the best model and additional models within 2 AICc
222	values of the best model as equally good (Burnham & Anderson, 2002).
11 2	

226 Modeling the Evolution of Relative Pituitary Size

We calculated relative total pituitary size and anterior lobe size from four sets of 227 phylogenetic residuals that were subsequently used in our evolutionary modeling 228 analyses. These residuals were produced from four PGLS models regressing the 229 pituitary variable onto body mass or brain mass using log₁₀ transformed data: total 230 pituitary size ~ body mass, total pituitary size ~ brain mass, anterior lobe size ~ body 231 mass, and anterior lobe size ~ brain mass. We used the fitContinuous function in the 232 geiger package (Harmon et al., 2008) for R (R Development Core Team, 2014) to test 233 the three models of trait evolution. For each type of phylogenetic residual, we tested 234 three models of evolution. We set the model argument to BM to model evolution via 235 Brownian motion, OU to model Ornsterin-Uhlenbeck evolution, and EB to model an 236 early burst pattern of evolution. We judged the model fit based on AICc values 237 (Burnham & Anderson, 2002). The best model exhibited the lowest value and other 238 models within 2 AICc values of the best model were treated as equally good (Burnham 239 & Anderson, 2002). All models used the mammal supertree presented in Bininida-240 Emonds et al (Bininda-Emonds et al., 2007; Bininda-Emonds et al., 2008). Polytomies 241 were randomly resolved to a series of dichotomies with branch lengths of zero using the 242 multi2di function in ape (Paradis et al., 2004). 243

244

245 **Results**

Examining Life History Variation in Multivariate Space

Our PCA of life history traits yielded two principal components (PC) with eigenvalues greater than 1 (eigenvalue of PC1 = 2.41 and PC2 = 1.49). Seven of the 10 variables exhibited similar loading values (between 0.310 and 0.383) and were

positively related to PC1: body mass, brain mass, fetal growth rate, postnatal growth

249

250

270

12

rate, gestation length, neonate mass, and weaning body mass (Table 1). Three life 251 history variables heavily loaded on PC2, but in different directions: litter size (+), 252 weaning age (-), and maximum longevity (-). 253 254 Examining the Relationship between Pituitary Size and Life History Traits 255 Based on our first set of PGLS models, total pituitary size was positively and 256 significantly related to PC1 (estimate = 1.72, P<0.001, df=1,67). Therefore, larger 257 pituitaries were associated with increased values in the seven life history traits that 258 loaded most heavily on PC1 (e.g. body mass, brain mass, fetal and postnatal growth 259 260 rates). In contrast, total pituitary size was negatively related to PC2 and this relationship only approached statistical significance (estimate = -0.343, P=0.07, df=1,67). The 261 models examining the size of the anterior lobe of the pituitary produced similar results to 262 those using total pituitary size. 263 Our second set of PGLS models, examining the relationship between pituitary 264 265 size and mammal growth rates produced consistent results. We found that pituitary gland size was significantly related to fetal and postnatal growth rates in mammals, 266 while accounting for body and brain mass. Based on AICc values, four equally good 267 268 models predicted mammal fetal growth rates (Table 2). Two models contained total pituitary size and one or two covariates (brain and/or body mass), and two models 269 contained anterior lobe size and one or two covariates. When we examined these

271 models in more detail, the pituitary size variables were always positive and significant predictors of fetal growth rate (*P*<0.001) (Table 3). In addition, our null models, which used only one or two covariates, produced poor models (Table 2). Similarly, the models including posterior lobe size poorly explained fetal growth rates. The four marsupial species in our dataset were outliers, exhibiting very low fetal growth rates for their relative anterior pituitary size. Removing these species from the analyses produced nearly identical results. We present a visual approximation between the anterior lobe size and fetal growth rates in Fig. 1.

Our models predicting mammal postnatal growth rates produced concordant 279 280 results. Based on AICc values, we found three equally good models explaining postnatal growth rates (Table 4). One model contained total pituitary size and body 281 mass. The other two models contained anterior lobe size and either body mass or body 282 mass and brain mass. Anterior lobe size was positively and significantly (P < 0.05) 283 related to mammal postnatal growth rate in each model (Table 5). For the model 284 containing total pituitary size, this variable was positively associated with postnatal 285 growth rates at the P=0.07 level. Importantly, our null models poorly explained variation 286 in postnatal growth rates (Table 4). Poorly fitting models were also produced when 287 288 posterior lobe size was used as a predictor. We present a visual approximation between the anterior lobe size and postnatal growth rates in Fig. 2. 289

We should note that the sample sizes varied between the fetal and postnatal growth rate analyses because not all species contained data for both variables. More importantly, the proportion of species from different orders is similar for the fetal and postnatal growth rates analyses (but the latter analyses have a smaller total sample size).

295

296 Modeling the Evolution of Relative Pituitary Size

We found that an Ornstein-Uhlenbeck model of trait evolution best explains relative total pituitary size and anterior lobe size (Table 6 and Figs. 3 and 4). These results are consistent, regardless of whether the pituitary is scaled to body mass or brain mass. Based on AICc values, both the Brownian motion and early burst models of evolution were much less likely to adequately explain pituitary size diversity.

Examining relative anterior lobe size on the mammal phylogeny reveals some 302 303 interesting patterns. Accounting for body mass, relatively small anterior lobes are distributed throughout the mammal tree, but especially exhibited by many strepsirrhine 304 primates (Fig. 3), Spermophilius and Marmota rodents, and marsupials. In contrast, 305 *Phoca largha*, the spotted seal, clearly has the relatively largest anterior lobe. Some of 306 these relative sizes differ when brain mass is accounted for, as opposed to body mass. 307 In this case, primates exhibit the smallest relative anterior lobe sizes; this includes both 308 strepsirrhine and haplorrhine species (Fig. 4). Relatively large anterior lobes are 309 distributed throughout the mammal tree, but are especially exhibited by the tenrecs and 310 caviid rodents. The relative total pituitary size exhibited similar patterns so is not 311 displayed here. 312

313

314 **Discussion**

We provide the first evidence that the size of the pituitary is linked to life history variation, especially growth rates, across a broad sample of mammal species. Our study demonstrates that the known connection between pituitary size and life history variation 318 at the intraspecific level is also found at the interspecific scale across mammals. Our findings that total pituitary gland size and anterior lobe size (accounting for brain and 319 body mass) were positively associated with fetal and postnatal growth rates across a 320 diverse set of mammalian species suggests that this connection represents coevolution 321 through deep evolutionary time. As expected, we found no effect of relative posterior 322 lobe size on life history variation. This further supports our idea that secretion of 323 hormones produced directly and indirectly by the anterior lobe (e.g. GH and IGF-1, 324 respectively) is the major factor driving growth rates. 325

326 Investigating the ultimate explanations for life history variation has been a major focus of evolutionary biology research (Roff, 1992; Stearns, 1992; Kappeler & Pereira, 327 2003), though integrating proximate mechanisms into a comparative life history 328 framework is relatively rare (but see Lessells, 2008; Swanson & Dantzer, 2014). 329 Whereas body mass is known to vary with life history traits across species (Harvey & 330 Clutton-Brock, 1985; Harvey et al., 1991), others have demonstrated that interspecific 331 variation in life history traits is related to a wide variety of factors, such as total energy 332 budget size (Pontzer & Kamilar, 2009), energy expenditure (Charnov & Berrigan, 1993; 333 Pontzer et al., 2010; Barton & Capellini, 2011), and mortality rate (Promislow & Harvey, 334 1990). Work by Allman and colleagues (1993b) linked various brain structures with 335 primate lifespan, though did not offer a mechanistic explanation for many of the 336 337 significant relationships.

At the proximate level, several studies have found an important connection between hormone signaling and life history. For example, the hypothalamic-pituitaryadrenal axis, or stress hormone axis, plays a role in early life history transitions (Crespi

et al., 2013) and the hypothalamic-pituitary-gonadal axis helps mediate trade-offs 341 between mating and parenting effort (Wingfield et al., 1990; Maney, 2008). Various 342 hormones are known to mediate the relationship between the anterior pituitary and 343 growth (Melmed, 2011). For example, relatively large pituitaries produce more GH and 344 stimulate the production of IGF-1 in the liver (Ayuk et al., 2004; Vierimaa et al., 2006), 345 resulting in increased growth rates (Kenyon, 2010). In addition to levels of hormone 346 secretion, a host of other factors can influence hormone action, such as genetics, the 347 number and affinity of receptors, and binding proteins (Romero, 2004). While further 348 research is necessary to confirm the mechanism(s) responsible for the positive 349 relationships between pituitary gland size and growth across mammal species, we 350 suggest that interspecific variation in relative anterior pituitary gland size reflects 351 hormone production and likely action (*i.e.*, growth). 352

Although our study focused on broad patterns across distantly related mammal 353 species, we did include data from humans. Although humans have relatively large 354 brains for their body size (Barton, 2006), humans are not unusual compared to other 355 mammals in the relationship between relative pituitary size and growth rates. Humans 356 are not an outlier in any of our analyses, which is notable considering their very slow 357 development, coupled with earlier weaning and relatively fast reproduction (Ellison, 358 2001). In other words, in terms of explaining growth rates, the size of the human 359 360 pituitary is expected for a mammal of their brain and body size. Interestingly, a recent study by Barton and Venditti (2013) found that another component of the human brain, 361 the frontal lobe, is not unusually large when compared to other mammals. 362

363 An Ornstein-Uhlenbeck model best explains relative pituitary size diversity among mammals. This model supports the idea that pituitary size evolution is 364 constrained. The typical mechanism invoked to explain this constraint is stabilizing 365 selection (Cooper & Purvis, 2010; Harmon et al., 2010). It may not be too surprising that 366 an endocrine gland responsible for producing several hormones related to essential 367 physiological processes exhibits a relatively slow rate of evolution. Our finding for 368 pituitary gland size contrasts findings from a recent paper by Cooper and Purvis 369 (Cooper & Purvis, 2010) that modeled the evolution of mammal body mass. They found 370 that an early burst model best explained body mass variation, with this trait evolving 371 guickly in the early history of mammals and then slowing through time. The fact that 372 different models of evolution best explain mammal body mass and pituitary size 373 suggests that these traits have evolved independently to some extent. 374

In summary, our study demonstrates the importance of examining biological traits 375 that are often investigated at the proximate level, in a broader evolutionary context 376 (Braendle et al., 2011; Crespi et al., 2013). By using a phylogenetic comparative 377 approach to explore some of the complex relationships between hormones and life 378 379 history traits, our findings lead us to suggest that pituitary size has evolved in concert with life history characteristics, especially fetal and postnatal growth rates. At this point, 380 we cannot be certain of the direction of causality in this relationship. It is possible that 381 382 selection on pituitary size is a byproduct of selection on life history traits. For example, pituitary size may be affected by selection on growth rates or reproductive cyclicity in 383 response to ecological or social pressures. In addition, it is interesting to note that the 384 385 relationship between pituitary-related hormone levels and other life history axes, such

386 as those related to maximum longevity, is less clear. For instance, at the intraspecific level, over-secretion and inhibition of hormones of pituitary origin are associated with 387 reduced and increased longevity, respectively (Flurkey et al., 2001; Ayuk et al., 2004; 388 Bartke, 2005; Vierimaa et al., 2006). However, a comparative study conducted by Stuart 389 and Page (2010) that found no relationship between maximum lifespan and IGF-1 levels 390 across 36 mammal species. Interestingly, recent work by Swanson and Dantzer (in 391 press) did find a significant negative relationship between IGF-1 levels and a life history 392 principal component that is heavily loaded by maximum longevity. 393 394 Future work should benefit from advances in laboratory methods and the

reduced cost of laboratory work that can provide a wealth of new information regarding 395 the hormone characteristics of a wide range of mammals. The increased availability of 396 hormone related data for numerous species should spur new research into the 397 comparative evolution of these traits. In addition, quantitative analyses incorporating 398 data from other endocrine glands (e.g. hypothalamus, thymus, thyroid) may provide a 399 more complete picture of the hormone synthesis pathways in an evolutionary context. 400 Finally, complementary genetic and epigenetic data on variation in hormone signaling, 401 behavior, and life history are required to better understand the complex interactions 402 between proximate mechanisms and resultant biological characteristics (Kenyon, 2010; 403 Holekamp et al., 2013). We demonstrate that associated data related to endocrine 404 405 gland size may be critical for fully understanding life history evolution.

406

408 Acknowledgments

- 409 We thank Magdalena Muchlinski, Christopher Heesy, and David Raichlen for helpful
- 410 comments on an earlier version of this manuscript.

412					
413	References				
414 415	Allman, J., McLaughlin, T. & Hakeem, A. 1993a. Brain weight and life-span in primate				
416	species. Proceedings of the National Academy of Sciences USA 90: 118-122.				
417	Allman, J.M., McLaughlin, T. & Hakeem, A. 1993b. Brain structures and life-span in				
418	primate species. Proceedings of the National Academy of Sciences USA 90:				
419	3559-3563.				
420	Austad, S.N. & Fischer, K.E. 1991. Mammalian aging, metabolism, and ecology:				
421	evidence from the bats and marsupials. <i>J Gerontol</i> 46: B47-B53.				
422	Ayuk, J., Clayton, R.N., Holder, G., Sheppard, M.C., Stewart, P.M. & Bates, A.S. 2004.				
423	Growth hormone and pituitary radiotherapy, but not serum insulin-like growth				
424	factor-I concentrations, predict excess mortality in patients with acromegaly. J				
425	<i>Clin Endocr Metab</i> 89: 1613–1617.				
426	Bartke, A. 2005. Minireview: Role of the growth hormone/insulin-like growth factor				
427	system in mammalian aging. Endocrinology 146: 3718–3723.				
428	Barton, R.A. 2006. Primate brain evolution: integrating comparative, neurophysiological,				
429	and ethological data. Evolutionary Anthropology 15: 224-236.				
430	Barton, R.A. & Capellini, I. 2011. Maternal investment, life histories, and the costs of				
431	brain growth in mammals. P Natl Acad Sci USA 108: 6169-6174.				
432	Barton, R.A. & Venditti, C. 2013. Human frontal lobes are not relatively large.				
433	Proceedings of the National Academy of Sciences USA: 9001-9006.				
434	Bauchot, R. & Legait, H. 1978. Le volume de l'hypophyse et des lobes hypophysaires				
435	chez les Mammiferes. Correlations et allometries. Mammalia 42: 235-254.				

436	Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D.,
437	Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L. & Purvis, A. 2007. The
438	delayed rise of present-day mammals. Nature 446: 507-512.
439	Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D.,
440	Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L. & Purvis, A. 2008.
441	Corrigendum: The delayed rise of present-day mammals. Nature 456: 274.
442	Braendle, C., Heyland, A. & Flatt, T. 2011. Integrating mechanistic and evolutionary
443	analysis of life history variation. In: Mechanisms of Life History Evolution: The
444	Genetics and Physiology of Life History Traits and Trade-Offs (T. Flatt & A.
445	Heyland, eds), pp. 3-10. Oxford University Press, Oxford.
446	Bribiescas, R.G. 2001. Reproductive ecology and life history of the human male. Yearb
447	Phys Anthropol 44: 148–176.
448	Brown, J.H. & Sibly, R.M. 2006. Life-history evolution under a production constraint. P
449	Natl Acad Sci USA 103: 17595-17599.
450	Buffenstein, R. & Pinto, M. 2009. Endocrine function in naturally long-living small
451	mammals. Mol Cell Endocrinol 299: 101-111.
452	Burnham, K.P. & Anderson, D. 2002. Model selection and multi-model inference.
453	Springer, New York.
454	Burnham, T.C., Chapman, J.F., Gray, P.B., McIntyre, M.H., Lipson, S.F. & Ellison, P.T.
455	2003. Men in committed, romantic relationships have lower testosterone.
456	Hormones and Behavior 44: 119-122.
457	Calder, W.A. 1984. Size, function, and life history. Harvard University Press,
458	Cambridge.

459	Catlett, K.K., Schwartz, G.T., Godfrey, L.R. & Jungers, W.L. 2010. "Life history space":
460	a multivariate analysis of life history variation in extant and extinct Malagasy
461	lemurs. American Journal of Physical Anthropology 142: 391-404.
462	Charnov, E.L. 1991. Evolution of life history variation among female mammals. P Natl
463	Acad Sci USA 88: 1134-1137.
464	Charnov, E.L. & Berrigan, D. 1993. Why do female primates have such long lifespans
465	and so few babies? Or life in the slow lane. Evolutionary Anthropology 1: 191-
466	194.
467	Cooper, N. & Purvis, A. 2010. Body size evolution in mammals: complexity in tempo
468	and mode. The American Naturalist 175: 727:738.
469	Cooper, N., Freckleton, R.P. & Jetz, W. 2011. Phylogenetic conservatism of
470	environmental niches in mammals. P Roy Soc Lond B 278: 2384:2391.
471	Crespi, E.J., Williams, T.D., Jessop, T.S. & Delehanty, B. 2013. Life history and the
472	ecology of stress: how do glucocorticoid hormones influence life-history variation
473	in animals? <i>Functional Ecology</i> 27: 93-106.
474	Dantzer, B. & Swanson, E.M. 2012. Mediation of vertebrate life histories via insulin-like
475	growth factor-1. <i>Biol. Rev.</i> 87: 414–429.
476	Ellison, P.T., ed. 2001. Reproductive Ecology and Human Evolution. Aldine
477	Transaction, New Brunswick.
478	Flurkey, K., Papaconstantinou, J., Miller, R.A. & Harrison, D.E. 2001. Lifespan
479	extension and delayed immune and collagen aging in mutant mice with defects in
480	growth hormone production. Proceedings of the National Academy of Sciences
481	USA 98: 6736-6741.

482	Freckleton, R.P., Harvey, P.H. & Pagel, M. 2002. Phylogenetic analysis and
483	comparative data: A test and review of evidence. Am Nat 160: 712-726.
484	Gaillard, JM., Loison, A., Festa-Bianchet, M., Yoccoz, N.G. & Solberg, E. 2003.
485	Ecological correlates of life span in populations of large herbivorous mammals.
486	In: Life Span: Evolutionary, Ecological, and Demographic Perspectives,
487	Supplement to Population and Development Review (J. R. Carey & S.
488	Tuljapurkar, eds).
489	Gettler, L.T., McDade, T.W., Feranil, A.B. & Kuzawa, C.W. 2011. Longitudinal evidence
490	that fatherhood decreases testosterone in human males. Proceedings of the
491	National Academy of Sciences USA 108: 16194-16199.
492	Gillooly, J.F., Charnov, E.L., West, G.B., Savage, V.M. & Brown, J.H. 2002. Effects of
493	size and temperature on developmental time. Nature 417: 70-73.
494	Harmon, L.J., Weir, J.T., Brock, C.D., Glor, R.E. & Challenger, W. 2008. GEIGER:
495	investigating evolutionary radiations. <i>Bioinformatics</i> 24: 129-131.
496	Harmon, L.J., Losos, J.B., Davies, T.J., Gillespie, R.G., Gittleman, J.L., Jennings, W.B.,
497	Kozak, K.H., McPeek, M.A., Near, F.MR.T.J., Purvis, A., Ricklefs, R.E.,
498	Schluter, D., II, J.A.S., Seehausen, O., Sidlauskas, B.L., Torres-Carvajal, O.,
499	Weir, J.T. & Mooers, A.Ø. 2010. Early bursts of body size and shape evolution
500	are rare in comparative data. Evolution 64: 2385-2396.
501	Harvey, P.H. & Clutton-Brock, T.H. 1985. Life-History Variation in Primates. Evolution
502	39: 559-581.
503	Harvey, P.H., Pagel, M.D. & Rees, J.A. 1991. Mammalian Metabolism and Life

504 Histories. *Am Nat* **137:** 556-566.

505	Hawkes, K., O'Connell, J.F., Blurton Jones, N.G., Alvarez, H. & Charnov, E.L. 1998.
506	Grandmothering, menopause, and the evolution of human life histories.
507	Proceedings of the National Academy of Sciences, USA 95: 1336-1339.
508	Holekamp, K.E., Swanson, E.M. & van Meter, P.E. 2013. Developmental constraints on
509	behavioural flexibility. Philos T Roy Soc B 368: 20120350.
510	Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Géloën, A., Even, P.C., Cervera,
511	P. & Le Bouc, Y. 2003. IGF-1 receptor regulates lifespan and resistance to
512	oxidative stress in mice. Nature 421: 182-187.
513	Insel, T.R. 2010. The challenge of translation in social neuroscience: a review of
514	oxytocin, vasopressin, and affiliative behavior. Neuron 65: 768-779.
515	Jones, K.E., Bielby, J., Cardillo, M., Fritz, S.A., O'Dell, J., Orme, C.D.L., Safi, K.,
516	Sechrest, W., Boakes, E.H., Carbone, C., Connolly, C., Cutts, M.J., Foster, J.K.,
517	Grenyer, R., Habib, M., Plaster, C.A., Price, S.A., Rigby, E.A., Rist, J., Teacher,
518	A., Bininda-Emonds, O.R.P., Gittleman, J.L., Mace, G.M. & Purvis, A. 2009.
519	PanTHERIA: A species-level database of life history, ecology, and geography of
520	extant and recently extinct mammals. Ecology 90: 2648.
521	Kamilar, J.M., Bribiescas, R.G. & Bradley, B.J. 2010. Is group size related to longevity in
522	mammals? <i>Biology Letters</i> 6: 736-739.
523	Kamilar, J.M. & Cooper, N. 2013. Phylogenetic signal in primate behaviour, ecology,
524	and life history. Philos Trans R Soc Lond B Biol Sci 368: 20120341.
525	Kappeler, P.M. & Pereira, M.E., eds. 2003. Primate life histories and socioecology.
526	University of Chicago Press, Chicago

Kenyon, C. 2010. The genetics of aging. *Nature* **464:** 504-512. 527

528	Leigh, S.R. 2004. Brain growth, life history, and cognition in primate and human
529	evolution. American Journal of Primatology 62: 139-164.
530	Lessells, C.M. 2008. Neuroendocrine control of life histories: what do we need to know
531	to understand the evolution of phenotypic plasticity? Philos T Roy Soc B 363:
532	1589-1598.
533	Lindenfors, P. 2002. Sexually antagonistic selection on primate size. J Evol Biol 15:
534	595–607.
535	Maney, D.L. 2008. Endocrine and genomic architecture of life history trade-offs in an
536	avian model of social behavior. Gen Comp Endocr 157: 275-282.
537	Martin, T.E. 1995. Avian life history evolution in relation to nest sites, nest predation,
538	and food. Ecological Monographs 65: 101-127.
539	Melmed, S. 2011. The pituitary, 3rd ed. Academic Press, London.
540	Mitani, J.C. & Watts, D. 1997. The evolution of non-maternal caretaking among
541	anthropoid primates: do helpers help? Behav Ecol Sociobiol 40: 213–220.
542	Nelson, M.L. & Inao, J. 1982. Seasonal changes in the pituitary gland of the feral
543	hawaiian mongoose (Herpestes auropunctatus). J Morphol 174: 133-140.
544	Nunn, C.L. 2011. The comparative method in evolutionary anthropology and biology.
545	University of Chicago Press, Chicago.
546	Oboussier, H. 1940. The influence of domestication on the hypophysis. Zoologischer
547	Anzeiger. 132: 197-222.
548	Orme, C.D.L., Freckleton, R.P., Thomas, G.H., Petzoldt, T., Fritz, S.A. & Isaac, N.J.B.
549	2014. caper: Comparative Analyses of Phylogenetics and Evolution in R.

- Pagel, M. 1999. Inferring the historical patterns of biological evolution. *Nature* 401: 877884.
- Paradis, E., Claude, J. & Strimmer, K. 2004. APE: analyses of phylogenetics and
 evolution in R language. *Bioinformatics* 20: 289-290.
- Pontzer, H. & Kamilar, J.M. 2009. Great ranging associated with greater reproductive
 investment in mammals. *P Natl Acad Sci USA* 106: 192-196.
- 556 Pontzer, H., Raichlen, D.A., Shumaker, R.W., Ocobock, C. & Wich, S.A. 2010.
- 557 Metabolic adaptation for low energy throughput in orangutans. *P Natl Acad Sci*
- 558 **USA 107:** 14048-14052.
- 559 Promislow, D.E.L. & Harvey, P.H. 1990. Living fast and dying young: a comparative
- analysis of life-history variation among mammals. *J. Zool. Lond.* **220:** 417-437.
- 561 R_Development_Core_Team 2014. R: A language and environment for statistical

562 computing, R Foundation for Statistical Computing. Vienna.

- 563 Revell, L.J. 2009. Size-correction and principal components for interspecific
- comparative studies. *Evolution* **63**: 3258-3268.
- Richardson, B.A. 1979. The anterior pituitary and reproduction in bats. *J. Reprod. Fertil.*566 56: 379-389.
- 567 Ricklefs, R.E. & Wikelski, M. 2002. The physiology/lifehistory nexus. *TREE* **17**: 462-468.
- 568 Roff, D.A. 1992. *Evolution of life histories: theory and analysis*. Springer, New York.
- Romero, L.M. 2004. Physiological stress in ecology: lessons from biomedical research.
- 570 *Trends in Ecology & Evolution* **19:** 249-255.
- 571 Safi, K., Cianciaruso, M.V., Loyola, R.D., Brito, D., Armour-Marshall, K. & Diniz-Filho,
- 572 J.A.F. 2011. Understanding global patterns of mammalian functional and

574

phylogenetic diversity. Philosophical Transactions of the Royal Society B:

Biological Sciences 366: 2536-2544.

575	Stearns, S.C. 1992. The evolution of life histories. Oxford University Press, Oxford.
576	Stuart, J.A. & Page, M.M. 2010. Plasma IGF-1 is negatively correlated with body mass
577	in a comparison of 36 mammalian species. Mechanisms of Ageing and
578	Development 131: 591-598.
579	Swanson, E.M. & Dantzer, B. 2014. Insulin-like growth factor-1 is associated with life-
580	history variation across Mammalia. P Roy Soc Lond B 281: 20132458.
581	Tacutu, R., Craig, T., Budovsky, A., Wuttke, D., Lehmann, G., Taranukha, D., Costa, J.,
582	Fraifeld, V.E. & de Magalhaes, J.P. 2013. Human Ageing Genomic Resources:
583	Integrated databases and tools for the biology and genetics of ageing. Nucleic
584	Acids Research 41: D1027-D1033.
585	Tecot, S.R., Baden, A.L., Romine, N. & Kamilar, J.M. 2012. Infant parking and nesting,
586	not allomaternal care, influence Malagasy primate life histories. Behav Ecol
587	Sociobiol 66: 1375-1386.
588	Venditti, C., Meade, A. & Pagel, M. 2011. Multiple routes to mammalian diversity.
589	<i>Nature</i> 479: 393-396.
590	Vierimaa, O., Georgitsi, M., Lehtonen, R., Vahteristo, P., Kokko, A., Raitila, A.,
591	Tuppurainen, K., Ebeling, T.M.L., Salmela, P.I., Paschke, R., Gunndogdu, S.,
592	Menis, E.D., Makkinen, M.J., Launonen, V., Karhu, A. & Aaltonen, L.A. 2006.
593	Pituitary adenoma predisposition caused by germline mutations in the AIP gene.

594 Science **312:** 1228-1230.

- 595 Wang, Z., Zhou, L., Hulihan, T.J. & Insel, T.R. 1996. Immunoreactivity of central
- vasopressin and oxytocin pathways in microtine rodents: a quantitative
 comparative study. *J. Comp. Neurol.* 366: 726–737.
- Western, D. 1979. Size, life history and ecology in mammals. *African Journal of Ecology* **17:** 185-204.
- Wilkinson, G.S. & South, J.M. 2002. Life history, ecology and longevity in bats. *Aging Cell* 1: 124-131.
- Williams, T.D. 2012. Hormones, life-history, and phenotypic variation: Opportunities in
 evolutionary avian endocrinology. *Gen Comp Endocr* **176** 286–295.
- Wingfield, J.C., Hegner, R.E., Dufty Jr, A.M. & Ball, G.F. 1990. The "challenge
- hypothesis": theoretical implications for patterns of testosterone secretion, mating
 systems, and breeding strategies. *Am Nat*: 829-846.
- Winslow, J.T., Hastings, N., Carter, C.S., Harbaugh, C.R. & Insel, T.R. 1993. A role for
- central vasopressin in pair bonding in monogamous prairie voles. *Nature* 365:
 545–548.
- 610
- 611

612	Figure	Legends
-----	--------	---------

- Figure 1. Plot of anterior lobe of the pituitary residuals (accounting for brain mass)
- versus fetal growth rate residuals (accounting for brain mass) across mammals.
- Different mammal clades are highlighted. Note that the four marsupial species in the
- dataset exhibit the lowest fetal growth rate values. Data are in log₁₀ space.
- ⁶¹⁷ Figure 2. Plot of anterior lobe of the pituitary residuals (accounting for brain mass)
- versus postnatal growth rate residuals (accounting for brain mass) across mammals.
- Different mammal clades are highlighted. Data are in log₁₀ space.
- Figure 3. Plot of phylogenetic residuals from a PGLS regression of anterior lobe pituitary
- size on body mass. The mammal Orders with the largest sample sizes are highlighted:
- 622 Primates, Rodentia, and Chiroptera.
- Figure 4. Plot of phylogenetic residuals from a PGLS regression of anterior lobe pituitary
- size on brain mass. The mammal Orders with the largest sample sizes are highlighted:
- 625 Primates, Rodentia, and Chiroptera.
- 626

632

Table 1. Loadings	of original	variables on	principal	component axes.
	or original	vullubics off	principui	component axes.

	nables en pri	neipai eem	ponene ax	201						
Variable	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
Body mass	0.367	0.227	0.055	0.362	-0.175	0.064	-0.155	-0.051	0.669	0.414
Brain mass	0.315	-0.276	-0.412	-0.256	-0.441	0.319	0.247	0.462	0.100	-0.097
Fetal growth rate	0.374	0.194	-0.036	-0.239	0.116	-0.095	0.595	-0.538	0.163	-0.268
Postnatal growth rate	0.329	0.302	-0.068	-0.299	0.092	-0.707	-0.138	0.410	-0.070	0.073
Gestation length	0.336	-0.226	0.180	-0.325	0.657	0.364	-0.303	0.106	0.164	-0.058
Neonate body mass	0.382	0.217	0.099	0.054	-0.011	0.299	0.131	-0.051	-0.646	0.517
Litter size	-0.147	0.402	-0.808	0.015	0.270	0.182	-0.206	-0.124	-0.013	0.017
Weaning age	0.215	-0.432	-0.256	0.631	0.384	-0.246	0.266	0.129	-0.090	-0.011
Weaning body mass	0.353	0.276	0.115	0.360	-0.176	0.131	-0.320	0.040	-0.200	-0.681
Maximum longevity	0.258	-0.470	-0.220	-0.140	-0.264	-0.228	-0.466	-0.529	-0.137	0.085
Eigenvalues	2.409	1.486	0.863	0.729	0.508	0.446	0.350	0.284	0.215	0.072

Table 2. Multimodel selection using AICc to predict fetal growth rates in mammals.							
Predictors	AICc	Delta AICc					
Total pituitary + Body mass + brain mass	36.703	0.000					
Anterior lobe + Body mass + brain mass	36.902	0.199					
Total pituitary + Body mass	37.612	0.908					
Anterior lobe + Body mass	37.678	0.975					
Body mass	47.008	10.304					
Posterior lobe + Body mass	48.008	11.305					
Body mass + brain mass	49.040	12.336					
Posterior lobe + Body mass + brain mass	50.145	13.442					
Brain mass	81.213	44.510					
Best models are in italics							

Models within 2 AICc values of the best model are considered equally good

636

Table 3. Best phylogenetic generalized linear models predicting fetal growth rate across mammal species based on AICc values. See Table 2 for AICc values.

					_
Variable	Estimate	Std Error	t value	p value	
(Intercept)	-2.235	0.304			
Total pituitary volume	0.531	0.136	3.909	<0.001	
Body mass	0.389	0.098	3.994	<0.001	
Brain mass	-0.241	0.136	-1.768	0.08	

Model r² = 0.746, p value <0.001, lambda = 0.967, df = 4,119

Variable	Estimate	Std Error	t value	p value
(Intercept)	-2.221	0.307		
Anterior lobe volume	0.445	0.113	3.917	<0.001
Body mass	0.438	0.092	4.786	<0.001
Brain mass	-0.236	0.134	-1.756	0.082
Model $r^2 = 0.745$ myslup < 0.001	lambda - 0 0	df = 4110		

Model r^2 = 0.745, p value <0.001, lambda = 0.970, df = 4,119

Variable	Estimate	Std. Error	t value	p value		
(Intercept)	-2.112	0.296				
Total pituitary volume	0.412	0.120	3.437	<0.001		
Body mass	0.315	0.089	3.538	<0.001		
Model r ² = 0.742, p value <0.001, lambda = 0.960, df = 3,120						

Variable	Estimate	Std. Error	t value	p value		
(Intercept)	-2.102	0.298				
Anterior lobe volume	0.348	0.101	3.432	<0.001		
Body mass	0.354	0.079	4.487	<0.001		
Model r ² = 0.741, p value <0.001, lambda = 0.961, df = 3,120						

All variables were $\log_{10} transformed \ prior to \ analysis$

640

Table 4. Multimodel selection using AICc to predict postnatal growth rates in mammals.							
Predictors	AICc	Delta AICc					
Anterior lobe + Body mass	79.046	0.000					
Anterior lobe + Body mass + brain mass	80.105	1.059					
Total pituitary + Body mass	80.777	1.731					
Body mass	82.019	2.973					
Total pituitary + Body mass + brain mass	82.238	3.191					
Posterior lobe + Body mass	83.418	4.372					
Body mass + brain mass	83.809	4.763					
Posterior lobe + Body mass + brain mass	85.607	6.561					
Brain mass	88.347	9.301					
Best models are in italics							

Models within 2 AICc values of the best model are considered equally good

Table 5 Best phylogenetic generalized linear models predicting postnatal growth rate across mammal species based on AICc values. See Table 4 for AICc values.

Variable	Estimate	Std Error	t value	p value			
(Intercept)	-0.232	0.423	-0.549	0.585			
Anterior lobe volume	0.395	0.174	2.268	0.026			
Body mass	0.250	0.136	1.842	0.070			
Model r ² = 0.584, p value <0.001,	lambda = 0.8	90, df = 3,73					
Variable	Estimate	Std. Error	t value	p value			
(Intercept)	-0.372	0.425					
Anterior lobe volume	0.551	0.218	2.531	0.014			
Body mass	0.351	0.158	2.217	0.030			
Brain mass	-0.313	0.249	-1.260	0.212			
Model r2 = 0.604, p value <0.001,	lambda = 0.8	348, df = 4,72					
Variable	Estimate	Std. Error	t value	p value			
(Intercept)	-0.375	0.414	-0.905	0.368			
Total pituitary	0.363	0.198	1.836	0.070			
Body mass	0.282	0.147	1.916	0.059			
Model r ² = 0.575, p value <0.001, lambda = 0.888, df = 3,73							

All variables were log₁₀ transformed prior to analysis

Table 6. Results from trait evolution models explaining variation in pituitary size across mammals.

	Brov	vnian Mo	otion	Ornstein-Uhlenbeck			Early Burst				
Variable	σ^2	log-lk	AICc	σ^2	α	log-lk	AICc	σ^2	r	log-lk	AICc
Relative pituitary size ¹	0.001	33.98	-63.89	0.002	0.025	49.93	-93.73	0.001	0.000	33.98	-61.83
Relative pituitary size ²	0.001	23.64	-43.23	0.002	0.017	38.61	-71.09	0.001	0.000	23.64	-41.16
Relative anterior lobe size ¹	0.002	3.10	-2.15	0.003	0.026	20.85	-35.57	0.002	0.000	3.10	-0.08
Relative anterior lobe size ²	0.002	1.71	0.63	0.002	0.014	13.31	-20.49	0.002	0.000	1.71	2.69

¹Based on the phylogenetic residuals from a PGLS model using body mass as a predictor

² Based on the phylogenetic residuals from a PGLS model using brain mass as a predictor

Three models of evolution were tested for each variable, with values in bold font indicating the best model

 σ^2 = Brownian motion parameter (net rate of evolution)

 α = OU parameter (constraint)

r = EB parameter (change in evolutionary rate through time)

271x171mm (300 x 300 DPI)

398x414mm (96 x 96 DPI)

407x418mm (96 x 96 DPI)

Species	Order	BodyMass(g)	BrainMass(g)	AntLobeVol(mm3)
Acomys_cahirinus	Rodentia	39	0.91	0.372
Aloutta_seniculus	Primates	3560	46.8	13.466
Anoura_caudifer	Chiroptera	10.4	0.44	0.209
Anoura_geoffroyi	Chiroptera	15.1	0.55	0.379
Antidorcas_marsupialis	Artiodactyla	35750	134.25	120.103
Aotus_trivirgatus	Primates	830	17.1	5.499
Arctocephalus_pusillus	Carnivora	85000	327	146.597
Artibeus_jamaicensis	Chiroptera	39.3	1.09	0.844
Artibeus_lituratus	Chiroptera	44.9	1.26	0.707
Ateles_geoffroyi	Primates	9400	106.4	40.028
Babyrousa_babyrussa	Artiodactyla	78000	127	130.444
Callicebus_moloch	Primates	670	17.65	6.688
Callimico_goeldii	Primates	480	11	2.384
Callithrix_jacchus	Primates	100	7.8	2.416
Capreolus_capreolus	Artiodactyla	20000	97	119.031
Carollia_perspicillata	Chiroptera	16.6	0.51	0.639
Cavia_aperea	Rodentia	735	5.57	6.304
Cebuella_pygmaea	Primates	140	4.5	1.015
Cebus_albifrons	Primates	3100	79.8	15.423
Cercopithecus_ascanius	Primates	2800	59.2	42.327
Cheirogaleus_major	Primates	450	6.8	1.2235
Cheirogaleus_medius	Primates	177	3.14	1.0215
Choloepus_didactylus	Pilosa	3550	25.25	19.395
Cricetomys_gambianus	Rodentia	780	4.48	7.697
Cricetus_cricetus_	Rodentia	325	2.74	3.035
Crocidura_russula	Soricomorpha	11	0.19	0.1046
Dama_dama	Artiodactyla	112500	348.5	520.343
Dasymys_incomtus	Rodentia	120	1.18	1.287
Daubentonia_madagascariensis	Primates	2800	45.15	12.622
Desmodus_rotundus	Chiroptera	34.9	1.02	0.603
Diceros_bicornis	Artiodactyla	1000000	638	508.5
Dolichotis_patagonum	Rodentia	4200	25	55.95
Echinops_telfairi	Afrosoricida	87.5	0.62	0.7355
Elephas_maximus	Proboscidea	2500000	4635	4311.05
Erinaceus_europaeus	Erinaceomorpha	860	3.35	6.415
Erythrocebus_patas	Primates	6700	97.1	44.883
Eulemur_fulvus	Primates	1400	23.3	5.5665
Galago_demidoff	Primates	81	3.38	0.6458
Galago_senegalensis	Primates	186	4.8	1.8085
Giraffa_camelopardalis	Artiodactyla	950000	655	1885.4
Glis_glis	Rodentia	141	2.07	0.659
Gorilla_gorilla	Primates	220000	450	120.029
Graphiurus_murinus	Rodentia	23	0.88	0.646
Hemicentetes_semispinosus	Afrosoricida	110	0.83	3.095
Homo_sapiens	Primates	55000	1250	321.509
Hybomys_univittatus	Rodentia	46	1	0.572

Hydrochaeris_hydrochaeris	Rodentia	26350	67	106.596
Hylobates_lar	Primates	5930	101.9	20.416
Hylomyscus_stella	Rodentia	19	0.71	0.205
Lagothrix_lagotricha	Primates	4010	91.33	24.163
Lama_glama	Artiodactyla	67000	245	122.515
Lasiurus_borealis	Chiroptera	7.8	0.17	0.159
Lemniscomys_striatus	Rodentia	83	1.02	1.033
Lophocebus_albigena	Primates	9250	110.5	33.521
Lophuromys_sikapusi	Rodentia	79	1.04	0.681
Loris_tardigradus	Primates	322	6.6	2.111
Lutra_lutra	Carnivora	8400	54.5	20.676
Macaca_mulatta	Primates	7000	85.4	11.936
Macropus_giganteus	Diprotodontia	18200	58	28.745
Macropus_robustus	Diprotodontia	20000	53.5	31.504
Macropus_rufus	Diprotodontia	16000	54	29.639
Marmota_marmota	Rodentia	1900	7.17	3.898
Martes_martes	Carnivora	1286.5	21	15.003
Meles_meles	Carnivora	6250	57	19.4
Meriones_crassus	Rodentia	150	2.85	1.385
Meriones_libycus	Rodentia	162	1.62	1.309
Meriones_persicus	Rodentia	130	1.89	1.818
Meriones_shawi	Rodentia	121	2.62	1.937
Mesocricetus_auratus	Rodentia	93	1.23	1.626
Microcebus_murinus	Primates	54	1.78	0.407
Microgale_talazaci	Afrosoricida	50.4	0.79	2.13
Microtus_arvalis	Rodentia	34	0.93	0.653
Miopithecus_talapoin	Primates	1000	39.7	8.715
Molossus_mollossus	Chiroptera	15	0.33	0.285
Mus_musculus	Rodentia	21.3	0.55	0.435
Muscardinus_avellanarius	Rodentia	21	0.76	0.271
Mustela_erminea	Carnivora	227	4.6	1.953
Mustela_nivalis	Carnivora	66.5	2.97	0.778
Mustela_putorius	Carnivora	1388	9.67	4.342
Myocastor_coypus	Rodentia	3700	16.89	24.55
Myotis_myotis	Chiroptera	20	0.42	0.484
Myrmecophaga_tridactyla	Pilosa	20000	76	103.277
Neomys_todiens	Soricomorpha	15.2	0.32	0.1667
Nycticebus_coucang	Primates	600	12.5	4.12
Ondatra_zibethicus	Rodentia	1200	4.95	6.174
Oryctolagus_cuniculus	Lagomorpha	1340	9.5	15.518
Otaria_byronia	Carnivora	187500	430	505.284
Otolemur_crassicaudatus	Primates	850	10.3	2.88
Pan_troglodytes	Primates	43500	420	2/3.86
Papio_anupis	Primates	12000	201	100.449
Papio_hamadryas	Primates	6500	114	63.111
Pecari_tajacu	Artiodactyla	1/000	102	81.417
Perodicticus_potto	Primates	1150	14	8.3265

Phoca_largha	Carnivora	25000	455	670.581
Phyllostomus_discolor	Chiroptera	40.1	1.08	1.267
Phyllostomus_hastatus	Chiroptera	99.9	1.6	1.46
Pipistrellus_pipistrellus	Chiroptera	4.5	0.14	0.143
Praomys_jacksoni	Rodentia	46	0.96	0.503
Praomys_morio	Rodentia	36.5	0.95	0.58
Praomys_tullbergi	Rodentia	34	0.69	0.492
Propithecus_verreauxi	Primates	3480	26.7	9.5835
Pudu_puda	Artiodactyla	4000	56	30.842
Pygathrix_nemaeus	Primates	4000	69	45.606
Rattus_norvegicus	Rodentia	273	2.15	1.918
Rhinolophus_euryale	Chiroptera	18.8	0.47	0.346
Rhinolophus_ferrumequinum	Chiroptera	18	0.52	0.487
Rhinolophus_hipposideros	Chiroptera	5	0.13	0.163
Saguinus_oedipus	Primates	347.5	9.26	2.255
Saimiri_sciureus	Primates	630	24.8	8.012
Sarcophilus_laniarius	Dasyuromorphia	7000	13.6	13.043
Sciurus_vulgaris_	Rodentia	319	4.51	2.99
Setifer_setosus	Afrosoricida	248	1.51	3.393
Sigmodon_hispidus	Rodentia	136	1.43	2.21
Solenodon_paradoxus	Soricomorpha	900	4.67	6.1195
Sorex_araneus	Soricomorpha	10.3	0.2	0.254
Sorex_minutus	Soricomorpha	5.3	0.11	0.1406
Sturnira_lilium	Chiroptera	18.2	0.59	0.608
Suncus_murinus	Soricomorpha	35.5	0.38	0.383
Sus_scrofa	Artiodactyla	107400	96.4	171.556
Talpa_europaea	Soricomorpha	76	1.02	0.3432
Tarsius_syrichta	Primates	87.5	3.63	1.4765
Tenrec_ecaudatus	Afrosoricida	832	2.57	4.987
Tupaia_glis	Scandentia	150	3.15	2.344
Uroderma_bilobatum	Chiroptera	13.9	0.62	0.707
Urogale_everetti	Scandentia	275	4.28	3.0215
Ursus_arctos	Carnivora	101000	347.33	111.68
Ursus_maritimus	Carnivora	130000	126	124.224
Varecia_variegata	Primates	3000	31.5	5.7725
Zalophus_californianus	Carnivora	75000	395	139.623

PitVol(mm3)	PostLobeVol(mm3)	FetalGrowthRate(g/d)	PostnatalGrowthRate(g/d)	Gestation(d)
1.496	0.072	0.346	1.184	38.54
28.968	14.985	2.194		189.9
0.408	0.109	0.020		107.97
0.624	0.143	0.039	0.051	125.14
152.917	29.199	22.665		169.49
10.404	4.401	0.766	2.218	133.47
190.094	37.633	16.062	43.101	357.99
1.255	0.314	0.076		138.7
1.076	0.295	0.084		106.45
82.403	36.632	1.900	3.776	226.37
166.144	32.095	7.904		156.5
9.466	2.419	0.458		164
5.526	2.724	0.344	1.097	153.99
3.427	0.663	0.445	2.649	144
165.747	31.077	11.037		196
0.804	0.121	0.043	0.206	114.6
8.635	1.264	2.025	8.632	61.7
2.55	1.378	0.208	1.181	134.44
30.848	10.234	1.480	2.562	158.29
55.308	10.069	2.523		148.5
3.356	1.748	0.584		70
2.1945	0.74	0.484		61.79
30.478	10.652	1.350		269.63
9.109	0.911	2.243		31.45
3.738	0.493	1.725	23.779	19.5
0.2069	0.0857	0.111	0.863	29
629.974	59.053	20.428	67.680	230
1.613	0.23		2.670	
23.682	8.587	0.739	7.220	166.48
0.918	0.22	0.033		209.35
644	135.5	75.069	672.050	466.24
62.385	5.07	10.342		97.97
1.49	0.6055	0.658		62.54
5032.87	721.82	215.559		634.49
10.09	3.19	1.950	25.457	36.98
65.357	15.289	3.755	7.539	167.2
10.1425	4.093	0.683		120.83
1.547	0.0843	0.115		111
4.431	2.437	0.136	1.772	126.98
2020.9	105.1	156.542		455.25
1.124	0.454		5.148	28.19
168.052	47.616	8.563	19.249	257
0.869	0.22	0.436		23.99
4.146	0.8175	0.741		53.07
369.356	44.916	11.584	8.014	274.78
0.699	0.106	0.337		30

134.677	23.026	34.731		150.73
28.852	7.927	1.892	0.871	212.91
0.286	0.063	0.155		29.49
34.3	8.091	1.971		223.99
184.486	30.517	26.259	151.860	342.74
0.28	0.079	0.159	0.127	84.21
1.393	0.144	0.415	2.306	25.15
55.913	16.81	2.757	7.974	182.64
0.959	0.154		1.275	
3.6865	1.349	0.095	1.100	165.99
31.751	9.365	8.913		64.27
29.989	16.111	2.867	2.801	166.07
36.543	7.524	0.023	15.902	36.56
45.12	13.493	0.020	12.952	34.59
42.657	11.97	0.024	20.599	33.99
7.28	2.913	3.378		35.22
22.523	6.423	3.418	41.861	30.63
29.172	8.416	5.775		48.6
2.16	0.309	0.598		23.5
1.697	0.111	0.935	5.981	25.43
2.46	0.352	1.039		28
2.721	0.258	1.024	4.115	24.8
1.964	0.201	1.334	9.700	15.49
0.642	0.2015	0.158		60.34
2.6215	0.339	0.134		60.74
0.923	0.172	0.459	2.106	21
14.157	4.793	1.100	1.340	164.38
0.451	0.11	0.032		107.97
0.676	0.078	0.300	2.304	19.6
0.474	0.173	0.138		24.97
3.213	0.916	0.229	2.541	66.35
1.403	0.389	0.278	6.021	36.49
6.421	1.541	1.942		41.49
30.168	3.003	8.330	156.096	131.86
0.935	0.361	0.123	0.611	73
139.349	26.786	8.208	25.012	182.74
0.3225	0.0962	0.212	1.680	21.38
9.3165	4.38	0.296	2.902	191.09
7.289	0.657	5.170	30.988	27.86
21.564	3.22	6.730	34.259	30.45
639.965	94.693	41.149		311.55
8.072	4.6495	0.405	4.148	131.04
301.458	25.475	7.915	5.626	231.49
151.723	45.927	5.346	4.559	178.96
108.386	42.456	4.994	6.687	180
119.519	27.584	6.660	137.178	144.88
12.668	3.39	0.210		193

818.65	106.011	35.348	377.423	288.95
1.45	0.134	0.067		107.97
2.557	0.71	0.128	0.587	123.39
0.207	0.042	0.040	0.107	44
0.656	0.099		2.447	35.49
0.683	0.068	0.244		35.99
0.682	0.13	0.380	1.070	23.9
16.771	5.8155	0.699		149.77
45.611	12.937	4.531	46.420	210
63.608	17.399	1.060		182.88
2.471	0.379	2.398	16.750	21.74
0.508	0.111	0.042		92.54
0.649	0.098	0.061		91.24
0.241	0.058	0.028		75.51
5.112	2.543	0.468	2.439	166.49
15.245	5.551	0.655	1.750	164.09
21.523	8.276	0.003	2.367	21
4.135	0.953	1.046		38
5.3527	1.637	1.389		57.63
2.543	0.255	1.330	4.127	27
10.445	3.766	2.278		64.8
0.3117	0.0402	0.128	2.431	21.5
0.1817	0.0234	0.056	1.159	23.81
0.768	0.124	0.048		107.97
0.6165	0.15	0.251	3.791	30.19
248.633	58.082	31.694	261.476	115.2
0.488	0.192	0.414	5.777	30.41
2.662	1.05	0.145		177.99
8.507	2.721	6.796	155.045	60.24
4.626	1.994	0.608	5.662	45.99
0.961	0.175		0.199	130.88
5.7665	2.09	0.608		55.49
159.32	34.567	4.922	312.986	227.56
186.132	39.629	17.213	63.347	64.66
14.1765	7.3005	1.974		102.5
180.6	30.6	25.574	61.224	349.99

NeonateBodyMass(g)	LitterSize	WeaningAge(d)	WeaningBodyMass(g)	MaxLongevity(y)
5.49	2.43	14	12.31	5.9
293.42	1.42	370.04		25
2.14	0.99			
4.99	0.99	62.5	8.24	10
3841.48	1	57.45		19.8
96.49	1.06	76.21	255.99	31
5750	1	356.3	21106.96	32.1
10.57	1			19.2
8.9	1		33.79	
425.85	1.01	816.35	3478.06	47.1
715	1.73	212.91		22.9
74.4	1.01	58.85		26.2
50.5	1.05	66.53	120.02	22.2
27.74	2.31	60.24	96.82	22.8
1208.55	1.79	79.75		17.5
4.89	1	35.63	12.24	17
58.38	2.14	20.86	142.52	6
14.5	1.93	90.73	70	18.6
231.92	1.01	270.32	917.69	40.4
371	1.01	146.54		31.2
18.08	2.26	47.14		
14.65	2.04	60.65		23.2
364	1	52.61		36.8
22.68	3.11	34.54		8.4
4.71	7.14	24.85	87.47	3.6
0.8	4.04	23.82	5.89	4
4698.44	1	177.63	16720.38	21.1
	2.67	30	30	
121.79	1.01	197.7	1535	23.3
6.94	1	253.01		29.2
34999.99	1	583.09	426865.48	49
578.96	1.75	76.28		14.4
7.49	5.49	31.18		19
97000	1.41	218.26		65.5
15.54	4.64	40	235	11.7
621.67	1.01	211.79	2202.46	28.3
74.99	1.1	134.64		35.5
9.89	1.29	43.47		13.4
11.5	1.5	93.93	122.47	17.1
55244.9	1.29	212.91		
	5.17	27.84	27.72	
2095.89	1.05	920.35	18967.67	55.4
3.49	3			6.9
7.39	5.32	21.5		
3182.96	1	725.86	8999.99	122.5
4.4	2.3			

1500	3.49	109.75		15.1
398.86	1.01	725.86	1025.02	56
1.47	3.11			
437.09	1.01	312.66		32
8999.99	1	131.7	29000	28.9
4.29	3.12	38	5.84	
2.25	4.64	27.28	15.81	4.8
498.58	1.01	211.71	2170	36
7.8	3	13.67	13.61	
11	1.44	167.49	139	19.3
284.99	2.01	100.8		18.2
471.47	1.01	304.16	1314.91	40
0.84	1	510.82	8124.03	25
0.7	1	366.19	4743.41	22
0.81	1	359.99	7416.19	25
29.74	4	49.18		17.4
30	3.49	54.19	679.99	18.2
90.24	3.11	91.3		18.6
3.34	4.21	30.24		5.6
5.24	4.54	30.18	45	5.2
4.99	5.83	19		6
4.35	5.84	29.31	25	
2.35	8.79	18.65	22.93	3.9
4.78	2	40.45		18.2
3.64	2.23	29.38		5.8
1.93	4.99	17.18	9.18	4.8
179.04	1.01	178.98	416.46	27.7
3.49	0.99	60.45		
1.06	5.54	21.5	10	4
0.8	4.3	37.61		5.3
2.25	6.74	60.93	25.22	12.5
2	5.07	36.74	45.63	9.1
9.5	8.48	54.39		11.1
205.7	5.34	52.83	1750	8.5
6	1.5	41.99	23.1	37.1
1500	1	79.96	3499.99	31
0.71	6.39	35.34	10	3.1
50.47	1.12	181.21	520	25.8
21.99	6.55	27.84	153.7	
39.11	5.24	26.3	211.06	
12819.99	1	363.96		29
46.57	1.14	124.62	499.99	22.7
1745.02	1.05	1260.81	8499.99	59.4
947.31	1.01	596.6	3640.26	37.5
890	1.01	363.96	3299.79	37.5
618.53	1.56	47.25	4773.44	31.5
37.16	1.09	149.15		26.8

10213.75	1	30.74	21815.73	47.6
7.29	0.99			9
15.94	0.99	72.82	59.09	18
1.28	1.37	33.44	3.89	16.6
	3.67	30	20	
2.68	3.28	30.77		
2.7	3.36	24.5	10.5	5.2
102.65	1.02	177.83		31
780	1.22	54.75	2863.2	18.3
191.94	1.01			26
5.8	8.99	25.37	53.07	3.8
3.89	1	105.72		
5.64	0.98	45.87		30.5
2.1	1	33.2		29.4
41	1.9	49.85	105	26.2
107.5	1	177.41	418	30.2
0.02	2.88	243.33	200	13
8.83	4.5	64.51		14.8
24.7	3.24	25.22		14.1
6.6	5.44	15.29	18.2	5.2
89.99	1.64	74.71		12.1
0.42	6.56	21.43	8.36	3.2
0.22	6.04	23.5	4.73	
5.25	0.99			12
2.44	3.1	19.16	25.87	3.2
807.77	4.52	97.88	6469.99	27
3.24	3.89	32.49	51.49	
25.6	1.01	82.49		16
24.24	16.89	21.87	225	8.7
12.6	2.22	34.27	100	12.4
	0.99	40.58	8.14	
19.97	1.69	30.24		11.5
499.99	2.24	182.5	26000	40
670.48	1.66	205.17	8500	43.8
93.69	2.16	90.73		37
6347.89	1.41	319.01	20199.75	35.7